n-dimensional Fourier transform

The following are from Chapter 6 of Stein-Sharkarchi.

Calculus on Rn\mathbb{R}^n

Integration

We use Rf(x)dx\int_{\mathbb{R}} f(x) dx or Rnf(x)dm(x)\int_{\mathbb R^n} f(x) dm(x) to denote the integral on Rn\mathbb{R}^n with the Lebesgue measure.

We’ll frequently consider integration on a hypersurface, in particular, the sphere. Let B(0,r)B(0,r) be the ball of radius rr on Rn\mathbb R^n, and S(0,r)S(0,r) be its boundary, i.e. the nn-sphere. The integral of restriction of ff on S(0,r)S(0,r) on the nn-sphere is denoted by S(0,r)f(y)dσr(y)\int_{S(0,r)}f(y) d\sigma_r(y), where dσr(y)d\sigma_r(y) is the area measure on the boundary of sphere.

The volume of ball and area of sphere is important quantity to know, we use m(B(0,r))m(B(0,r)) or B(0,r)|B(0,r)| to denote the volume of ball radius rr, and Bn|B^n| to denote the volume of unit ball in Rn\mathbb{R}^n. Similarly, Sd1|S^{d-1}| to denote the unit sphere in Rd\mathbb{R}^d. For example, the volume of unit ball in R3\mathbb{R}^3 is B3B^3 and area of unit sphere is S2S^2.

In the exercise you’ll be asked to calculate the exact value of Bn|B^n| and Sn1|S^{n-1}|. Then we have m(B(0,r))=rnBnm(B(0,r)) = r^n|B^n| and S(0,r)=rn1Sn1|S(0,r)| = r^{n-1}|S^{n-1}|.

Fubini theorem

Integral on ball

B(0,r)f(x)dm(x)=0rS(0,t)f(y)dσt(y)dr=0rMt(f)rn1Sn1dr.\begin{split} \int_{B(0,r)} f(x)dm(x) &= \int_{0}^{r} \int_{S(0,t)} f(y) d\sigma_t(y) dr \\ & = \int_{0}^r M_t(f) r^{n-1}|S^{n-1}|dr. \end{split}

Here MtM_t means the average of ff on S(0,t)S(0,t) given by S(0,t)f(y)dσt(y)S(0,t)\int_{S(0,t)}f(y) \frac{d\sigma_t(y)}{|S(0,t)|}. For example, on R2\mathbb R^2 we have Mt(f)=S(0,t)fdσt2πt=02πf(reit)dt2πM_t(f) = \int_{S(0,t)}f \frac{d\sigma_t}{2\pi t} = \int_{0}^{2\pi}f(re^{it})\frac{dt}{2\pi}.

Change of variable formula

Let UU be an open set, φ:UV\varphi:U\to V be a C1\mathscr{C}^1-diffeomorphism (i.e. φ is C1\mathscr{C}^1, one-to-one and onto, Jacobi matrix of φ invertible everywhere). Let f:VRf:V\to \mathbb R be a function. Then dx1dxn=det(φ(y))dy1dyndx_1\wedge \cdots dx_n = \det (\varphi(y))dy_1\wedge \dots \wedge dy_n, so Vf(x)dx=Uf(φ(y))det(φ(y))dy1dyn\int_{V}f(x) dx= \int_{U}f(\varphi(y))\det(\varphi(y))dy_1\wedge \dots dy_n.

Example: Spherical coordinate

Let (x1x2x3)\begin{pmatrix}x_1\\x_2\\x_3 \end{pmatrix} = (rcosφ1rsinφ1cosφ2rsinφ1sinφ2)\begin{pmatrix} r\cos \varphi_1 \\ r\sin\varphi_1 \cos \varphi_2 \\ r\sin \varphi_1\sin\varphi_2 \end{pmatrix}. Then we dx1dx2dx3=r2sinφ1drdφ1dφ2dx_1\wedge dx_2 \wedge dx_3 = r^2 \sin\varphi_1 dr \wedge d\varphi_1 \wedge d\varphi_2. Here φ1[π/2,π/2],φ2[π,π]\varphi_1\in [-\pi/2,\pi/2], \varphi_2\in [-\pi,\pi].

More generally, on Rn\mathbb{R}^n, let (x1x2x3x4xn1xn)=(rcosφ1rsinφ1cosφ2rsinφ1sinφ2cosφ3rsinφ1sinφ2sinφ3cosφ4rsinφ1sinφn2cosφn1rsinφ1sinφn2sinφn1)\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{n-1}\\x_n \end{pmatrix} = \begin{pmatrix} r\cos \varphi_1 \\ r \sin \varphi_1 \cos \varphi_2 \\ r\sin\varphi_1 \sin\varphi_2 \cos\varphi_3 \\ r\sin\varphi_1 \sin\varphi_2 \sin \varphi_3 \cos\varphi_4 \\ \vdots \\ r\sin\varphi_1 \cdots \sin\varphi_{n-2} \cos\varphi_{n-1} \\ r\sin\varphi_1 \dots\sin\varphi_{n-2} \sin\varphi_{n-1} \end{pmatrix}.

Then dx1dxn=rn1sinφ1sinφ2sinφn2drdφ1dφndx_1\wedge \cdots dx_n = r^{n-1}\sin\varphi_1\sin\varphi_2\cdot \sin \varphi_{n-2} dr\wedge d\varphi_1\wedge \cdots d\varphi_n. Here φ1,,φn2[π/2,π/2],φn1[π,π]\varphi_1,\dots,\varphi_{n-2} \in [-\pi/2,\pi/2], \varphi_{n-1}\in [-\pi,\pi].

Differential

Let α be a multi-index. We use xαx^{\alpha} to denote the monomial x1α1xnαnx_1^{\alpha_1}\cdots x_n^{\alpha_n}. We use αu\partial_\alpha u to denote the operator uαux1α1xnαnu\to \frac{\partial^{\alpha}u}{\partial x_1^{\alpha_1}\cdots \partial{x_n}^{\alpha_n}}. For example, the Laplace operator Δu=2x12u++2xn2u=11u++nnu\Delta u = \frac{\partial^2}{\partial x_1^2}u + \cdots + \frac{\partial^2}{\partial x_n^2}u = \partial_{11}u + \cdots +\partial_{nn}u. The order of derivative is given by α=α1+αn|\alpha| = \alpha_1+\cdots \alpha _n.

Distribution theory

A test function on Rn\mathbb R^n is a smooth function with compact support on Rn\mathbb R^n. With this, the distribution theory generalizes naturally to Rn\mathbb{R}^n.

n-dimensional Fourier transform

Let f:RnRf:\mathbb{R}^n\to \mathbb{R} be a Schwartz function. The Fourier transform of ff is given by Ff(ξ)=Rnf(x)e2πix,ξdx\mathcal Ff(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \langle x,\xi\rangle}dx, where x,ξ\langle x,\xi\rangle is the inner product given by x1ξ1++xnξnx_1\xi_1 + \cdots + x_n \xi_n.

Basic properties

The following are direct generalization from one-dim case.

Derivative theorem

The Fubini theorem and one-dimensional case implies

  • F(αf)(ξ)=(2πi)αξαFf(ξ).\mathcal F(\partial_\alpha f)(\xi) = (2\pi i)^{|\alpha|} \xi^\alpha \mathcal Ff(\xi).

  • Conversely (2πix)αf(x)(-2\pi i x)^{\alpha}f(x) ------> αFf(ξ)\partial^{\alpha}\mathcal Ff(\xi)

Shifting and scaling theorems

  • f(x+h)f(x+h) -----> e2πix,ξFf(ξ)e^{2\pi i \langle x ,\xi\rangle }\mathcal Ff(\xi)

  • f(x)e2πix,hf(x)e^{-2\pi i \langle x,h \rangle} -----> Ff(ξ+h)\mathcal Ff(\xi + h)

  • f(ax)f(a x) -----> anFf(ξa)|a|^{-n}\mathcal Ff(\frac{\xi}{a}).

A new thing in high dimension is the linear transformation beocmes richer (much more than shifting and scaling).

Rotations

A rotation is a linear transformation which preserves length, i.e. a linear transformation R:RnRnR:\mathbb{R}^n\to \mathbb{R}^n such that R(x)=x|R(x)| = |x|. We’ll also identify RR with its matrix and write RxRx for a rotation. By polarization identity, fixing norm is equivalent to fixing innner product. So we can also define rotation as a linear transformation which satisfies Rx,Ry=x,y\langle Rx,Ry \rangle = \langle x,y\rangle for every x,yRnx,y\in \mathbb R^n.

The change of variable formula (apply to φ(x)=Rx\varphi(x) = Rx) implies f(Rx)\mathcal f(Rx) -----> Ff(Rξ)\mathcal Ff(R\xi).

Ff(Rx)(ξ)=Rnf(Rx)e2πi<Rx,ξ>dm(x)=Rnf(y)e2πiR1y,ξdm(R1y)=Rnf(y)e2πiy,Rξdet(R)1dm(y)=Ff(R(ξ)). \begin{split} \mathcal Ff(Rx)(\xi) &= \int_{\mathbb{R}^n}f(Rx)e^{-2\pi i \langle<Rx,\xi>}dm(x)\\ &= \int_{R^n}f(y)e^{-2\pi i \langle R^{-1}y,\xi \rangle}dm(R^{-1}y)\\ &= \int_{\mathbb R^n}f(y)e^{-2\pi i \langle y,R\xi \rangle} \det(R)^{-1}dm(y) \\ &= \mathcal Ff(R(\xi)). \end{split}

Fourier transform of radial function

A radial function is a function f:RnRf:\mathbb{R}^n \to \mathbb{R}, xf(x)x\mapsto f(x) that only depends on x|x|. In other words, f(x)=g(x)f(x) = g(|x|) for some one-variable function gg.

Wave equation

The one-dimensional wave equation is given by uxx=1cuttu_{xx} = \frac{1}{c}u_{tt}.

The wave equation is given by Δu=1c2utt\Delta u = \frac{1}{c^2}u_{tt}. Here u(x,t)u(x,t) is a function on Rn×R\mathbb{R}^n\times \mathbb R. Note that here the tt-variable, though represents time, is allowed to take negative value since we want to look at “backwards” wave as well.

We normalize so that c=1c = 1. Take Fourier transform of wave equation on the spacial variable we get 4π2(s12++sn2)u^(s,t)=ttu^(s,t)-4\pi^2(s_1^2+\cdots+s_n^2) \hat{u}(s,t) = \widehat{\partial_{tt} u}(s,t). Here u^(s,t):=Rnu(x,t)e2πix,sdm(x)\hat{u}(s,t):=\int_{\mathbb{R}^n} u(x,t)e^{-2\pi i \langle x,s \rangle} dm(x).

We expect that ttu^=ttu^\widehat{\partial_{tt}u} = \partial_{tt}\hat{u}. This is justified by the “differential under integral sign” lemma, a consequence of dominated convergence theorem.

Lemma. If tu(x,t)\partial_t u(x,t) is continuous, then tRnu(x,t)e2πix,ξdm(x)=Rntu(x,t)e2πiξ,xdm(x)\partial_t \int_{\mathbb R^n} u(x,t) e^{-2\pi i \langle x,\xi \rangle } dm(x) = \int_{\mathbb R^n} \partial_t u(x,t) e^{-2\pi i \langle \xi,x\rangle} dm(x).

So if uu is a solution of wave equation, then u^(x,t)\hat{u}(x,t) satisfies the ODE 4π2u^(s,t)=u^tt(s,t)-4\pi^2 \hat{u}(s,t) = \hat{u}_{tt}(s,t).

The ODE is can be easily solved (see here for a quick introduction of 2nd order ODE). Let f(x)=u(x,0)f(x) = u(x,0) and g(x)=ut(x,0)g(x) = u_t(x,0) be the initial phase and speed. We have

u^(s,t)=Ff(s)cos(2πst)+Fg(s)sin(2πst)2πs.(*) \hat u(s,t) = \mathcal Ff(s) \cos(2\pi |s| t ) + \mathcal F g(s)\frac{\sin(2\pi |s|t)}{2\pi|s|}. \tag{*}

It follows that uu is given by the inverse Fourier transform of the RHS.

Solving the wave equation

We’ll utalize our theory of distributions. For a distribution-free approach see Stein-Sharkarchi page 186-192.

1-dim case

We look at the one-dim case first using the fundamental solution approach. In the 1-dimensional case, sRs\in \mathbb{R}, so we know

F1[cos(as)]=F1[e2πias+e2πias2]=12(δa+δa).\mathcal F^{-1}[\cos(as)] = \mathcal F^{-1}[\frac{e^{2\pi i a s}+e^{-2\pi i a s}}{2}] = \frac{1}{2}(\delta_a + \delta_{-a}).

And the second term is just our familiar sinc function. By scaling theorem F1(sin(2πst)2πst)=F1sinc(2ts)=t2tΠ(x2t)=12χ[t,t](x)\mathcal F^{-1}(\frac{\sin(2\pi |s|t)}{2\pi |s|t} ) = \mathcal F^{-1}\mathrm{sinc}(2ts) = \frac{t}{2|t|}\Pi(\frac{x}{2t}) = \frac{1}{2}\chi_{[-t,t]}(x).

So by inverse Fourier transform to ()(*) and apply convolution theorem we get

u(s,t)=fδa+δa2(x)+g12χ[t,t](x)=12(f(x+a)+f(xa))+12xtx+tg(y)dy \begin{split} u(s,t) &= f*\frac{\delta_a + \delta_{-a}}{2}(x) + g* \frac{1}{2}\chi_{-[t,t]}(x)\\ & = \frac{1}{2}(f(x+a)+f(x-a)) + \frac{1}{2}\int_{x-t}^{x+t}g(y)dy \end{split}

3-dim case

The 3 dimensional case turns out to be easier so we look at this case first. Observe that t(sin(2πst)2πs)=cos(2πst)\frac{\partial}{\partial t}(\frac{\sin(2\pi |s|t)}{2\pi|s|}) = \cos(2\pi|s|t) so the above argument can actually be simplified, and we see that the main problem is to calculate F1[cosξ]\mathcal F^{-1}[\cos \xi] and F1[sinc(ξ)]\mathcal F^{-1}[\mathrm{sinc}(\xi)] for ξRn\xi\in \mathbb{R}^n.

Lemma

Let σ be the area measure of S(0,1)S(0,1) on R3\mathbb{R}^3. Then

Fσ(ξ)=2sin(2πξ)ξ.\mathcal F \sigma(\xi) = \frac{2\sin(2\pi |\xi|)}{|\xi|} .

Since the area of S2S^2 on R3\mathbb R^3 is 4π4\pi, it also implies F(σ)(ξ):=F14πσ(ξ)=sin(2πξ)2πξ\mathcal F(\overline \sigma)(\xi):=\mathcal F\frac{1}{4\pi}\sigma (\xi) = \frac{\sin(2\pi |\xi|)}{2\pi |\xi|}. This is direct generalization of F12χ[1,1](s)=sin2πs2πs\mathcal F \frac{1}{2}\chi_{[-1,1]}(s) = \frac{\sin 2\pi s}{2\pi s}.

Proof. Note that the measure dσd\sigma is rotation invariant, i.e. for every rotation RR, dσ(Rx)=dσ(x)d\sigma(Rx) = d\sigma(x), it follows that Fσ(ξ)\mathcal F\sigma(\xi) is radial, consequently Fσ(ξ)=Fσ(ξ00)\mathcal F\sigma(\xi) = \mathcal F\sigma\begin{pmatrix}|\xi|\\ 0 \\ 0 \end{pmatrix}.

Since σ is compact support,

Fσ(ξ)=(σ(x),e2πix,ξ)=φ1[π/2,π/2],φ2[π,π]e2πix,ξdσ(x)=πππ2π2e2πiξcosφ1sinφ1dφ1dφ2=2π11e2πiξ(cosφ1)d(cosφ1)=2sin(2πξ)ξ. \begin{split} \mathcal F\sigma(\xi) &= (\sigma(x),e^{2\pi i \langle x,\xi\rangle}) \\ & = \int_{\varphi_1\in[-\pi/2,\pi/2],\varphi_2\in[-\pi,\pi]} e^{-2\pi i \langle x,\xi\rangle} d\sigma(x) \\ & = \int_{-\pi}^{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-2\pi i |\xi|\cos\varphi_1}\sin\varphi_1 d\varphi_1 d\varphi_2 \\ & = 2\pi \int_{-1}^{1}e^{2\pi i |\xi| (-\cos\varphi_1)}d(-\cos \varphi_1) \\ & = \frac{2\sin(2\pi|\xi|)}{|\xi|}. \end{split}

\square

By scaling theorem F1sin(2πξt)2πξt=1t214πσ(xt)=14πt2σt(x)=:σˉt\mathcal F^{-1}\frac{\sin (2\pi |\xi|t)}{2\pi |\xi|t} = \frac{1}{t^2}\frac{1}{4\pi} \sigma(\frac{x}{t}) = \frac{1}{4\pi t^2}\sigma_t(x) =: \bar{\sigma}_t, here σˉt\bar{\sigma}_t is the normalized area measure on S(0,t)S(0,t), note that it is a probability measure.

For the cosine part, F1cos(2πξt)=F1tsin(2πξt)2πξ=tF1sin(2πξt)2πξ=t(tσˉt)\mathcal F^{-1}\cos(2\pi |\xi|t) = \mathcal F^{-1}\frac{\partial}{\partial t} \frac{\sin (2\pi |\xi|t)}{2\pi |\xi|} = \frac{\partial}{\partial t}\mathcal F^{-1}\frac{\sin(2\pi |\xi|t)}{2\pi |\xi|} =\frac{\partial}{\partial t}(t\bar{\sigma}_t). (The notation is a bit messy here but it will be clear when we apply it later, don’t worry.)

Another problem is about convolution with the area measure.

Lemma

Let σt\sigma_t be the area measure on S(0,t)S(0,t). Then for any xx, let (Mt,x,f):=14πt2S(x,t)f(y)dS(y)(M_{t,x},f):=\frac{1}{4\pi t^2}\int_{S(x,t)}f(y)dS(y) be the average of ff on B(x,t)\partial B(x,t). Then (Mt,x,f)=(fσˉt)(x)(M_{t,x},f) = (f*\bar{\sigma}_t)(x). Note that here fσˉt(x):=S(0,t)f(xy)dσt(y)4πt2f*\bar{\sigma}_t(x):=\int_{S(0,t)}f(x-y)\frac{d\sigma_t(y)}{4\pi t^2} is the convolution of the (compactly supported) probability measure.

Proof.

(Mt,x,f)=14πt2S(x,t)f(y)dS(y)=S(0,t)f(xy)dσˉt(y)=fdσˉt(x)\begin{split} (M_{t,x},f) & =\frac{1}{4\pi t^2} \int_{S(x,t)}f(y)dS(y) \\ & = \int_{S(0,t)} f(x-y')d\bar{\sigma}_t(y') \\ & = f*d\bar{\sigma}_t(x) \end{split}

\square

Taking inverse Fourier transform to ()(*) we get

u(x,t)=F1[Ff(s)cos(2πst)+Fg(s)sin(2πst)2πs]=fF1cos(2πst)(x)+gF1sin(2πst)2πs=t(ftσt)(x)+tgσt(x)=t(Mx,t,f)+t(Mx,t,g). \begin{split} u(x,t) &= \mathcal F^{-1} [\mathcal Ff(s) \cos(2\pi |s| t ) + \mathcal F g(s)\frac{\sin(2\pi |s|t)}{2\pi|s|}] \\ &= f*\mathcal{F}^{-1}\cos(2\pi|s|t)(x) + g*\mathcal{F}^{-1}\frac{\sin(2\pi |s|t)}{2\pi |s|} \\ & = \frac{\partial}{\partial t}(f* t\overline{\sigma_t})(x) + t g*\overline{\sigma_t}(x) \\ & = \frac{\partial}{\partial t}(M_{x,t},f) +t(M_{x,t}, g). \end{split}

Compare this with the one-dimensional case.

2-dim case

On Stein-Sharkarchi

Appendix: Speed of light

Differential forms on R3\mathbb{R}^3

The Maxwell equations

Let CC be a closed curve in R3\mathbb{R}^3 and SS be any surface patch surrounded by the curve. We assume everything are smooth for simplicity, though we mostly only need C2\mathscr{C}^2. Let F=(f1,f2,f3)\mathbf{F}=(f_1,f_2,f_3) be a vector field. The line integral CFds\int_{C}F\cdot ds is given by the integral Cf1dx1+f2dx2+f3dx3\int_C f_1dx_1+f_2dx_2+f_3dx_3. The surface integral SFdS\int_S \mathbf{F}\cdot dS is given by (dS,f1n1+f2n2+f3n3)(-dS,f_1n_1+f_2n_2+f_3n_3) (see problem set 8) or the wiki page.

Take t\partial_t both side on (4) we get ϵ0μ0tte=tdb=dtb=d(de)=dde\epsilon_0\mu_0 \partial_{tt}\mathfrak{e} = \partial_t d*\mathfrak{b} = d*\partial_t \mathfrak b = d*(-d*\mathfrak e) = -d*d*\mathfrak e.

Laplace operator on differential forms

We need the computation from this note

  • Let ω be a 2-form, then ω=dδω+δdω=ddω+ddω\square \omega = d\delta\omega+\delta d\omega = d*d* \omega+*d*d\omega. If ω is closed, then ω=ddω\square\omega = d*d*\omega (which is the case of e\mathfrak e and b\mathfrak b!)

  • If ω=f(x,y,z)dxdy\omega = f(x,y,z)dx\wedge dy, then ω=(xxf+yyf+zzf)dxdy=(Δf)dxdy\square \omega = -(\partial_{xx}f+\partial_{yy}f+\partial_{zz}f)dx\wedge dy = -(\Delta f)dx\wedge dy.

Combine the results we derive the wave equation:

The meaning of constant cc in the wave equation Δf=1c2ttf\Delta f = \frac{1}{c^2}\partial_{tt}f is the speed of the wave. So c=1ϵ0μ0c = \frac{1}{\sqrt{\epsilon_0\mu_0}} is the speed of electronic wave in vaccum. So the Maxwel theory is not consistant with Newton mechanics because lightspeed is a constant, which leads to special relativity.