Inversion and Duality ¶ Recall that for f ∈ S f \in \mathcal S f ∈ S we have the duality formula F ( f − ) = ( F f ) − = F − 1 f \mathcal F(f^-) = (\mathcal Ff)^- = \mathcal F^{-1}f F ( f − ) = ( F f ) − = F − 1 f , which follows directly from the definition of inverse Fourier transform and Fourier transform. This is also the case for tempered distributions.
Let T T T be a tempered distribution. Let T − T^{-} T − be the tempered distribution given by ( T − , g ) = ( T , g − ) (T^-,g) = (T,g^{-}) ( T − , g ) = ( T , g − ) .
For T ∈ S ′ T\in \mathcal S' T ∈ S ′ , let F − 1 T \mathcal F^{-1}T F − 1 T be the tempered distribution given by ( F − 1 T , g ) = ( T , F − 1 g ) (\mathcal F^{-1}T,g) = (T,\mathcal F^{-1} g) ( F − 1 T , g ) = ( T , F − 1 g ) . Then ( F − 1 F T , g ) = ( F T , F − 1 g ) = ( T , F F − 1 g ) = ( T , g ) (\mathcal F^{-1}\mathcal F T,g) = (\mathcal FT,\mathcal F^{-1}g) = (T,\mathcal F \mathcal F^{-1}g) = (T,g) ( F − 1 F T , g ) = ( F T , F − 1 g ) = ( T , F F − 1 g ) = ( T , g ) . Then we obtain
Then ( F T − , g ) = ( T − , F g ) = ( T , ( F g ) − ) = ( T , F − 1 g ) = ( T , F g − ) (\mathcal FT^{-},g) = (T^-,\mathcal Fg) = (T,(\mathcal Fg)^{-}) = (T,\mathcal F^{-1}g) = (T,\mathcal Fg^{-}) ( F T − , g ) = ( T − , F g ) = ( T , ( F g ) − ) = ( T , F − 1 g ) = ( T , F g − ) .
F ( T − ) = ( F T ) − = F − 1 T \mathcal F(T^{-}) = (\mathcal FT)^- = \mathcal F^{-1}T F ( T − ) = ( F T ) − = F − 1 T .
By inversion theorem, F F T = T − \mathcal F\mathcal F T = T^- FF T = T − .
We developed the inversion theory as follows:
First define inverse Fourier transform F − 1 f \mathcal F^{-1}f F − 1 f by F − 1 f ( s ) = ∫ − ∞ + ∞ f ( x ) e 2 π i x s d x \mathcal F^{-1}f(s) = \int_{-\infty}^{+\infty}f(x)e^{2\pi i xs}dx F − 1 f ( s ) = ∫ − ∞ + ∞ f ( x ) e 2 πi x s d x . Use the periodization lemma to prove that f ( x ) = ∫ − ∞ + ∞ F f ( s ) e 2 π i x s d s f(x) = \int_{-\infty}^{+\infty}\mathcal Ff(s)e^{2\pi i x s}ds f ( x ) = ∫ − ∞ + ∞ F f ( s ) e 2 πi x s d s , then conclude the inversion theorem F − 1 F f = f \mathcal F^{-1}\mathcal F f = f F − 1 F f = f . The duality formula F F − = F − 1 \mathcal F\mathcal F^- = \mathcal F^{-1} F F − = F − 1 is a consequence of inversion theorem. In fact, there is an alternative approach, see problem set 6.
First define the inversion operator F − 1 \mathcal F^{-1} F − 1 to be F − 1 f = F f − \mathcal F^{-1}f = \mathcal Ff ^- F − 1 f = F f − . Let T f = F − 1 F f = F F f − Tf = \mathcal F^{-1}\mathcal F f = \mathcal F\mathcal F f^- T f = F − 1 F f = FF f − . Observe that T T T commutes with multiplication by x x x and d d x \frac{d}{dx} d x d . Conclude that T T T must be the identity! This implies the inversion theorem! Convolutions ¶ Convolution of Schwartz function with tempered distribution ¶ We aim to define the convolution f ∗ T f*T f ∗ T for f ∈ S , T ∈ S ′ f\in \mathcal S, T\in \mathcal S' f ∈ S , T ∈ S ′ .
By the “try function first” principle, consider the case T = T g T = T_g T = T g for smooth function g g g . Then
( f ∗ T g , h ) = ∫ x f ∗ g ( x ) h ( x ) d x = ∫ x ∫ y f ( x − y ) g ( y ) d y h ( x ) d x = ∫ y g ( y ) ∫ x f ( x − y ) h ( x ) d x = ∫ y g ( y ) ∫ x f − ( y − x ) h ( x ) d x = ( T g , f − ∗ h ) \begin{split}
(f*T_g, h) &= \int_x f*g(x)h(x)dx \\
&= \int_x \int_y f(x-y)g(y)dy\; h(x)dx\\
&= \int_y g(y)\int_x f(x -y)h(x)dx \\
&= \int_y g(y) \int_x f^-(y-x)h(x)dx\\
&= (T_g,f^-*h)
\end{split} ( f ∗ T g , h ) = ∫ x f ∗ g ( x ) h ( x ) d x = ∫ x ∫ y f ( x − y ) g ( y ) d y h ( x ) d x = ∫ y g ( y ) ∫ x f ( x − y ) h ( x ) d x = ∫ y g ( y ) ∫ x f − ( y − x ) h ( x ) d x = ( T g , f − ∗ h ) Alternatively, instead of using f − f^- f − , we can also change variable x ′ = x − y x' = x-y x ′ = x − y to rewrite the integral as ∫ y g ( y ) ∫ x f ( x ′ ) h ( x ′ + y ) d x ′ = ( T g ( y ) , ( T f ( x ) , h ( x + y ) ) \int_{y}g(y)\int_x f(x')h(x'+y)dx' = (T_g(y),(T_f(x),h(x+y)) ∫ y g ( y ) ∫ x f ( x ′ ) h ( x ′ + y ) d x ′ = ( T g ( y ) , ( T f ( x ) , h ( x + y )) , where we treat ( T f ( x ) , h ( x + y ) ) = ( T , τ − y h ) (T_f(x),h(x+y)) = (T,\tau_{-y}h) ( T f ( x ) , h ( x + y )) = ( T , τ − y h ) as a function of y y y .
Let f ∈ S , T ∈ S ′ f\in \mathcal S, T\in \mathcal S' f ∈ S , T ∈ S ′ , define f ∗ T f*T f ∗ T to be the distribution given by ( f ∗ T , g ) = ( T , f − ∗ g ) (f*T,g) = (T,f^-*g) ( f ∗ T , g ) = ( T , f − ∗ g ) . Using the 1 + x 2 1+x^2 1 + x 2 trick one can show that f ∗ T f*T f ∗ T is tempered.
Let T , S T,S T , S be distributions, define T ∗ S T*S T ∗ S to be ( T ∗ S , g ) = ( S , ( T , τ − y g ) ) = ( S ( y ) , ( T ( x ) , g ( x + y ) ) ) (T*S,g) = (S,(T,\tau_{-y}g)) =(S(y),(T(x),g(x+y))) ( T ∗ S , g ) = ( S , ( T , τ − y g )) = ( S ( y ) , ( T ( x ) , g ( x + y ))) . This is not always a distribution, but we only need the case when T , S T,S T , S are shifted δ measures, and δ a ∗ δ b = δ a + b \delta_a * \delta _b = \delta_{a+b} δ a ∗ δ b = δ a + b . In particular, δ ∗ δ = δ \delta*\delta = \delta δ ∗ δ = δ .
Shifting and Scaling ¶ Recall for f ∈ S f\in \mathcal S f ∈ S , we have proved the shifting theorem F ( f ( x − a ) ) ( s ) = e − 2 π i a s F f ( s ) \mathcal F(f(x-a))(s) = e^{-2\pi i a s}\mathcal Ff(s) F ( f ( x − a )) ( s ) = e − 2 πia s F f ( s ) and the scaling theorem F f ( a x ) ( s ) = 1 ∣ a ∣ F f ( s a ) \mathcal Ff(ax)(s) = \frac{1}{|a|}\mathcal Ff(\frac{s}{a}) F f ( a x ) ( s ) = ∣ a ∣ 1 F f ( a s ) . In order to formulate the correspondent properties for distributions, we introduce the shifting operator τ a : S → S \tau_a:\mathcal S\to \mathcal S τ a : S → S , τ a f ( x ) = f ( x − a ) \tau_af (x) = f(x-a) τ a f ( x ) = f ( x − a ) , and the scaling operator σ a : S → S \sigma_a:\mathcal S\to\mathcal S σ a : S → S , σ a f ( x ) = f ( a x ) \sigma_a f(x) = f(ax) σ a f ( x ) = f ( a x ) . Then the shifting theorem and scaling theorem is given by
Shifting and Scaling on
S \mathcal S S Shifting theorem: F τ a f = e − 2 π i a x ⋅ F f \mathcal F \tau_a f = e^{-2\pi i a x}\cdot \mathcal Ff F τ a f = e − 2 πia x ⋅ F f , where the x x x in e − 2 π i a x e^{-2\pi i a x} e − 2 πia x is formal variable following the variable of F f \mathcal Ff F f .
Scaling theorem: F σ a f = 1 ∣ a ∣ σ 1 a F f \mathcal F\sigma_a f = \frac{1}{|a|}\sigma_{\frac{1}{a}}\mathcal Ff F σ a f = ∣ a ∣ 1 σ a 1 F f .
Taking - both side and apply duality formula we get F − 1 τ a f = e 2 π i a x F − 1 f \mathcal F^{-1}\tau_a f = e^{2\pi i a x}\mathcal F^{-1}f F − 1 τ a f = e 2 πia x F − 1 f , i.e. τ a F g = F ( e 2 π i a x ⋅ g ) \tau_a \mathcal Fg = \mathcal F(e^{2\pi i a x}\cdot g) τ a F g = F ( e 2 πia x ⋅ g ) . Similarly, σ a F g = 1 ∣ a ∣ F ( σ 1 a g ) \sigma_a\mathcal Fg = \frac{1}{|a|}\mathcal F(\sigma_{\frac{1}{a}}g) σ a F g = ∣ a ∣ 1 F ( σ a 1 g ) .
Shifting of tempered distribution ¶ Using the “try function” principle, ( τ a T f , g ) = ∫ f ( x − a ) g ( x ) d x = ∫ f ( x ′ ) g ( x ′ + a ) d x ′ = ( T f , τ − a g ) (\tau_a T_f,g) = \int f(x-a)g(x)dx = \int f(x')g(x'+a)dx' = (T_f,\tau_{-a}g) ( τ a T f , g ) = ∫ f ( x − a ) g ( x ) d x = ∫ f ( x ′ ) g ( x ′ + a ) d x ′ = ( T f , τ − a g ) . Then we define τ a T \tau_a T τ a T by ( τ a T , g ) = ( T , τ − a g ) (\tau_a T,g) = (T,\tau_{-a} g) ( τ a T , g ) = ( T , τ − a g ) .
Scaling of tempared distribution ¶ ( σ a T f , g ) = ∫ f ( a x ) g ( x ) d x = 1 ∣ a ∣ ∫ f ( x ′ ) g ( x ′ a ) d x ′ = ( T f , 1 ∣ a ∣ σ 1 a g ) (\sigma_a T_f,g) = \int f(ax)g(x)dx = \frac{1}{|a|}\int f(x')g(\frac{x'}{a})dx' = (T_f,\frac{1}{|a|}\sigma_{\frac{1}{a}}g) ( σ a T f , g ) = ∫ f ( a x ) g ( x ) d x = ∣ a ∣ 1 ∫ f ( x ′ ) g ( a x ′ ) d x ′ = ( T f , ∣ a ∣ 1 σ a 1 g ) . Then we define σ a T \sigma_a T σ a T by ( σ a T , g ) = ( T , 1 ∣ a ∣ σ 1 a g ) (\sigma_a T,g) = (T,\frac{1}{|a|}\sigma_{\frac{1}{a}}g) ( σ a T , g ) = ( T , ∣ a ∣ 1 σ a 1 g ) .
Shifting and scaling theorem ¶ ( F τ a T , g ) = ( τ a T , F g ) = ( T , τ − a F g ) = ( T , F ( e − 2 π i a x ⋅ g ) ) = ( F T , e − 2 π i a x ⋅ g ) = ( e − 2 π i a x F T , g ) (\mathcal F\tau_aT,g) = (\tau_a T, \mathcal F g) = (T,\tau_{-a}\mathcal F g) = (T,\mathcal F(e^{-2\pi i a x}\cdot g)) = (\mathcal FT,e^{-2\pi i a x}\cdot g) = (e^{-2\pi i a x }\mathcal FT, g) ( F τ a T , g ) = ( τ a T , F g ) = ( T , τ − a F g ) = ( T , F ( e − 2 πia x ⋅ g )) = ( F T , e − 2 πia x ⋅ g ) = ( e − 2 πia x F T , g ) .
( F σ a T , g ) = ( σ a T , F g ) = ( T , 1 ∣ a ∣ σ 1 a F g ) = ( T , 1 ∣ a ∣ ⋅ ∣ a ∣ F σ a g ) = ( T , F σ a g ) = ( F T , σ a g ) = ( 1 ∣ a ∣ σ a F T , g ) (\mathcal F\sigma_aT,g) = (\sigma_aT, \mathcal F g) = (T,\frac{1}{|a|}\sigma_{\frac{1}{a}}\mathcal Fg) = (T,\frac{1}{|a|}\cdot |a|\mathcal F\sigma_{a}g) = (T,\mathcal F\sigma_a g) = (\mathcal FT,\sigma_a g) = (\frac{1}{|a|}\sigma_a\mathcal FT,g) ( F σ a T , g ) = ( σ a T , F g ) = ( T , ∣ a ∣ 1 σ a 1 F g ) = ( T , ∣ a ∣ 1 ⋅ ∣ a ∣ F σ a g ) = ( T , F σ a g ) = ( F T , σ a g ) = ( ∣ a ∣ 1 σ a F T , g ) .
From the above derivation we get
It’s formally the same as the case of S \mathcal S S .