Lecture 13

Inversion and Duality

Recall that for fSf \in \mathcal S we have the duality formula F(f)=(Ff)=F1f\mathcal F(f^-) = (\mathcal Ff)^- = \mathcal F^{-1}f, which follows directly from the definition of inverse Fourier transform and Fourier transform. This is also the case for tempered distributions.

Let TT be a tempered distribution. Let TT^{-} be the tempered distribution given by (T,g)=(T,g)(T^-,g) = (T,g^{-}).

For TST\in \mathcal S', let F1T\mathcal F^{-1}T be the tempered distribution given by (F1T,g)=(T,F1g)(\mathcal F^{-1}T,g) = (T,\mathcal F^{-1} g). Then (F1FT,g)=(FT,F1g)=(T,FF1g)=(T,g)(\mathcal F^{-1}\mathcal F T,g) = (\mathcal FT,\mathcal F^{-1}g) = (T,\mathcal F \mathcal F^{-1}g) = (T,g). Then we obtain

Then (FT,g)=(T,Fg)=(T,(Fg))=(T,F1g)=(T,Fg)(\mathcal FT^{-},g) = (T^-,\mathcal Fg) = (T,(\mathcal Fg)^{-}) = (T,\mathcal F^{-1}g) = (T,\mathcal Fg^{-}).

Remark on the duality formula

We developed the inversion theory as follows:

  • First define inverse Fourier transform F1f\mathcal F^{-1}f by F1f(s)=+f(x)e2πixsdx\mathcal F^{-1}f(s) = \int_{-\infty}^{+\infty}f(x)e^{2\pi i xs}dx.
  • Use the periodization lemma to prove that f(x)=+Ff(s)e2πixsdsf(x) = \int_{-\infty}^{+\infty}\mathcal Ff(s)e^{2\pi i x s}ds, then conclude the inversion theorem F1Ff=f\mathcal F^{-1}\mathcal F f = f.
  • The duality formula FF=F1\mathcal F\mathcal F^- = \mathcal F^{-1} is a consequence of inversion theorem.

In fact, there is an alternative approach, see problem set 6.

  • First define the inversion operator F1\mathcal F^{-1} to be F1f=Ff\mathcal F^{-1}f = \mathcal Ff ^-.
  • Let Tf=F1Ff=FFfTf = \mathcal F^{-1}\mathcal F f = \mathcal F\mathcal F f^-. Observe that TT commutes with multiplication by xx and ddx\frac{d}{dx}.
  • Conclude that TT must be the identity!
  • This implies the inversion theorem!

Convolutions

Convolution of Schwartz function with tempered distribution

We aim to define the convolution fTf*T for fS,TSf\in \mathcal S, T\in \mathcal S'.

By the “try function first” principle, consider the case T=TgT = T_g for smooth function gg. Then

(fTg,h)=xfg(x)h(x)dx=xyf(xy)g(y)dy  h(x)dx=yg(y)xf(xy)h(x)dx=yg(y)xf(yx)h(x)dx=(Tg,fh)\begin{split} (f*T_g, h) &= \int_x f*g(x)h(x)dx \\ &= \int_x \int_y f(x-y)g(y)dy\; h(x)dx\\ &= \int_y g(y)\int_x f(x -y)h(x)dx \\ &= \int_y g(y) \int_x f^-(y-x)h(x)dx\\ &= (T_g,f^-*h) \end{split}

Alternatively, instead of using ff^-, we can also change variable x=xyx' = x-y to rewrite the integral as yg(y)xf(x)h(x+y)dx=(Tg(y),(Tf(x),h(x+y))\int_{y}g(y)\int_x f(x')h(x'+y)dx' = (T_g(y),(T_f(x),h(x+y)), where we treat (Tf(x),h(x+y))=(T,τyh)(T_f(x),h(x+y)) = (T,\tau_{-y}h) as a function of yy.

Shifting and Scaling

Recall for fSf\in \mathcal S, we have proved the shifting theorem F(f(xa))(s)=e2πiasFf(s)\mathcal F(f(x-a))(s) = e^{-2\pi i a s}\mathcal Ff(s) and the scaling theorem Ff(ax)(s)=1aFf(sa)\mathcal Ff(ax)(s) = \frac{1}{|a|}\mathcal Ff(\frac{s}{a}). In order to formulate the correspondent properties for distributions, we introduce the shifting operator τa:SS\tau_a:\mathcal S\to \mathcal S, τaf(x)=f(xa)\tau_af (x) = f(x-a), and the scaling operator σa:SS\sigma_a:\mathcal S\to\mathcal S, σaf(x)=f(ax)\sigma_a f(x) = f(ax). Then the shifting theorem and scaling theorem is given by

Shifting of tempered distribution

Using the “try function” principle, (τaTf,g)=f(xa)g(x)dx=f(x)g(x+a)dx=(Tf,τag)(\tau_a T_f,g) = \int f(x-a)g(x)dx = \int f(x')g(x'+a)dx' = (T_f,\tau_{-a}g). Then we define τaT\tau_a T by (τaT,g)=(T,τag)(\tau_a T,g) = (T,\tau_{-a} g).

Scaling of tempared distribution

(σaTf,g)=f(ax)g(x)dx=1af(x)g(xa)dx=(Tf,1aσ1ag)(\sigma_a T_f,g) = \int f(ax)g(x)dx = \frac{1}{|a|}\int f(x')g(\frac{x'}{a})dx' = (T_f,\frac{1}{|a|}\sigma_{\frac{1}{a}}g). Then we define σaT\sigma_a T by (σaT,g)=(T,1aσ1ag)(\sigma_a T,g) = (T,\frac{1}{|a|}\sigma_{\frac{1}{a}}g).

Shifting and scaling theorem

(FτaT,g)=(τaT,Fg)=(T,τaFg)=(T,F(e2πiaxg))=(FT,e2πiaxg)=(e2πiaxFT,g)(\mathcal F\tau_aT,g) = (\tau_a T, \mathcal F g) = (T,\tau_{-a}\mathcal F g) = (T,\mathcal F(e^{-2\pi i a x}\cdot g)) = (\mathcal FT,e^{-2\pi i a x}\cdot g) = (e^{-2\pi i a x }\mathcal FT, g).

(FσaT,g)=(σaT,Fg)=(T,1aσ1aFg)=(T,1aaFσag)=(T,Fσag)=(FT,σag)=(1aσaFT,g)(\mathcal F\sigma_aT,g) = (\sigma_aT, \mathcal F g) = (T,\frac{1}{|a|}\sigma_{\frac{1}{a}}\mathcal Fg) = (T,\frac{1}{|a|}\cdot |a|\mathcal F\sigma_{a}g) = (T,\mathcal F\sigma_a g) = (\mathcal FT,\sigma_a g) = (\frac{1}{|a|}\sigma_a\mathcal FT,g).

From the above derivation we get

It’s formally the same as the case of S\mathcal S.