Lecture 10

The Fourier transform on S\mathcal S

In last lecture we defined the Schwartz class of functions. First, we’ll show that the Fourier transform is well behaved in the Schwarz functions

  • S\mathcal S is closed under Fourier transform.
  • All the properties of Fourier transform works without further assumptions.
  • The Fourier transform is invertible.
  • The Poisson summation formula.
  • The Fourier transform is isometry with L2L^2 norm on SS.

Secondly, the Schwartz functions serves as “test objects” to define a class of distributions that behave well under Fourier transforms, called “tempered distributions”.

By definition, fSf\in \mathcal S if and only if f(k,l):=supxRxkf(l)(x)<\|f\|_{(k,l)}:=\sup_{x\in \mathbb{R}} |x^k f^{(l)}(x)|<\infty for every k,l0k,l \geq 0. We also let fN:=maxk+l=Nf(k,l)\|f\|_N:=\max_{k+l = N}\|f\|_{(k,l)}. The (k,l)\| \cdot \|_{(k,l)} as well as N\|\cdot\|_N are semi-norms on S\mathcal S.

Lemma. If fL1(R)f\in L^1(\mathbb{R}), then Ff\mathcal Ff is bounded.

Proof. Ff(s)=+f(x)e2πixsdx+f(x)dx=fL1|\mathcal Ff(s)| = |\int_{-\infty}^{+\infty}f(x)e^{-2\pi i x s}dx|\leq \int_{-\infty}^{+\infty}|f(x)|dx = \|f\|_{L^1}.

Lemma. If fSf\in \mathcal S, then xkf(l)(x)x^kf^{(l)}(x) is L1L^1 for every (k,l)(k,l).

Proof of above lemma. We show integrability by showing the function is moderate decreasing. xkf(l)(x)=xk(1+x)2f(l)(x)1+x2=supxk(1+x)2f(l)(x)11+x2x^kf^{(l)}(x) = \frac{x^k(1+x)^2f^{(l)}(x)} {1+x^2} = \sup|x^k(1+x)^2f^{(l)}(x)|\cdot \frac{1}{1+x^2}.

Proof of (1). We need to estimate the (k,l)(k,l)-seminorms of Ff(s)\mathcal Ff(s). Using the derivative theorem and multiplication theorem, all functions of the form skdldslFf(s)s^k\frac{d^l}{ds^l}\mathcal Ff(s) is some multiple of Fourier transform of xldkdxkfx^l\frac{d^k}{dx^k}f. But xldkdxkfx^l\frac{d^k}{dx^k}f is L1L^1 because fSf\in \mathcal S, then the previous lemma implies boundedness of Fourier transform. \square

Proof of (2). We’ll give two proofs.

First proof. See this discussion.

Second proof. Since f,gSf,g\in \mathcal S, fgf*g is moderate decreasing. Indeed, fg(x)=Rf(xy)g(y)dy=yx2f(xy)g(y)dy+yx2f(xy)g(y)dyf*g(x) = \int_{\mathbb{R}}f(x-y)g(y)dy = \int_{|y|\leq \frac{|x|}{2}}f(x-y)g(y)dy+\int_{|y|\geq \frac{|x|}{2}}f(x-y)g(y)dy. The first term is bounded by gL111+(x2)2\|g\|_{L^1} \frac{1}{1+(\frac{|x|}{2})^2} and second term bounded by fL111+(x2)2\|f\|_{L^1}\frac{1}{1+(\frac{x}{2})^2}. By the convolution theorem, F(fg)=FfFg\mathcal F(f*g) = \mathcal Ff \cdot \mathcal Fg, so F(fg)S\mathcal F(f*g)\in S. Then by Fourier inversion, fg=F1F(fg)=F1f*g = \mathcal F^{-1} \mathcal F(f*g) = \mathcal F^{-1} of Schwartz function, which is Schwartz. \square

Periodization of Schwartz functions

The informal derivation of the Fourier transform of rect function in lecture 8 applies to Schwartz functions (even though the Schwartz functions are not compact supported). We make the informal discussion precise as follows.

Periodization Lemma

If ff is moderate decreasing on R\mathbb{R} with f(x)C1+x2|f(x)|\leq \frac{C}{1+x^2}, then

(1) fT(x)=k=+f(xkT)f_T(x) = \sum_{k=-\infty}^{+\infty}f(x - kT) converges uniformly.

(2) Let f^T(n)\widehat{f}_T(n) be the Fourier coefficients of fTf_T. Then f^T(n)=1TFf(nT)\hat{f}_T(n) = \frac{1}{T}\mathcal Ff(\frac{n}{T}).

(3) fT(x)f(x)Cπ2T2|f_T(x) - f(x)|\leq \frac{C\pi^2}{T^2} when x[T2,T2]x\in [-\frac{T}{2},\frac{T}{2}], this CC is the same as the CC in moderate decreasing condition of ff. In particular, this implies fT(x)f(x)0|f_T(x) - f(x)|\to 0 uniformly on every bounded subset of R \mathbb{R}.

Proof.

(1) Note that fTf_T is periodic function, so we only need to consider xx in its period, say, x[T2,T2]x\in [\frac{T}{2},\frac{T}{2}]. f(xkT)C1+(xkT)2=C1+T2(xTk)2C1+T2(k12)2|f(x - kT)|\leq \frac{C}{1+(x-kT)^2} = \frac{C}{1+T^2(\frac{x}{T}-k)^2}\leq \frac{C}{1+T^2(k-\frac{1}{2})^2}. Note that k=+C1+T2(k12)2\sum_{k=-\infty}^{+\infty}\frac{C}{1+T^2(k - \frac{1}{2})^2} converges, so fTf_T converges uniformly by Wererstrass MM-test.

(2)

fT^(n)=1TT2T2fT(x)e2πTinxdx=1Tk=+T2T2f(xkT)e2πTinxdx=1Tk=+T2kTT2kTf(x)e2πTinxdx=1T+f(x)e2πinTxdx=1TFf(nT). \begin{split} \hat{f_T}(n) &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(x)e^{-\frac{2\pi}{T}i n x}dx \\ &= \frac{1}{T}\sum_{k = -\infty}^{+\infty}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(x - kT) e^{-\frac{2\pi}{T}inx}dx\\ &= \frac{1}{T}\sum_{k = -\infty}^{+\infty}\int_{-\frac{T}{2}-kT}^{\frac{T}{2} - kT}f(x)e^{-\frac{2\pi}{T}inx}dx \\ &= \frac{1}{T}\int_{-\infty}^{+\infty}f(x)e^{-2\pi i \frac{n}{T}x}dx \\ &= \frac{1}{T}\mathcal Ff(\frac{n}{T}). \end{split}

(3) fT(x)f(x)=k0,kZf(xkT)kZ,k0C1+(xkT)2CT2k0,kZ11T2+(xTk)2CT22k11(k12)2|f_T(x) - f(x)| = |\sum_{k\neq 0,k\in \mathbb{Z}}f(x - kT)| \leq \sum_{k \in \mathbb{Z}, k\neq 0}\frac{C}{1+(x - kT)^2}\leq \frac{C}{T^2}\sum_{k \neq 0,k\in \mathbb{Z}} \frac{1}{\frac{1}{T^2}+(\frac{x}{T}-k)^2} \leq \frac{C}{T^2}\cdot 2\sum_{k\geq 1}\frac{1}{(k - \frac{1}{2})^2}. To verify the the last inequality, observe that T2xT2    12xT12    (xTk)2(k12)2-\frac{T}{2}\leq x\leq \frac{T}{2}\implies -\frac{1}{2}\leq \frac{x}{T}\leq \frac{1}{2} \implies (\frac{x}{T}-k)^2 \geq (k - \frac{1}{2})^2 for every k0k\neq 0.

Now we summerize three important consequences of the periodization lemma.

The Poisson summation formula

When ff is in S\mathcal S, the derivatives of ff are moderate decreasing so fTf_T is smooth. Then the Fourier series of fTf_T converges uniformly on [T2,T2][-\frac{T}{2},\frac{T}{2}], then we obtain

The Inversion theorem

We know that with Fourier coefficients we can obtain the function by taking Fourier series.

fT(x)=n=+fT^(n)e2πTinx=n=+1TFf(nT)e2πinTxf_T(x) = \sum_{n = -\infty}^{+\infty}\hat{f_T}(n)e^{\frac{2\pi}{T}i n x} = \sum_{n = -\infty}^{+\infty}\frac{1}{T}\mathcal Ff(\frac{n}{T})e^{2\pi i\frac{n}{T}x}.

For every xRx\in \mathbb{R}, when TT is sufficiently large, xx will be in [T2,T2][-\frac{T}{2},\frac{T}{2}]. Then (3) of periodization lemma implies fT(x)f(x)f_T(x)\to f(x). For ϵ>0\epsilon > 0, choose T,NT,N such that fT(x)f(x)<ϵ|f_T(x) - f(x)|<\epsilon and n=NN1TFf(nT)e2πinTxNT+NTFf(s)e2πixsds<ϵ|\sum_{n = -N}^N \frac{1}{T}\mathcal Ff(\frac{n}{T})e^{2\pi i \frac{n}{T}x} - \int_{-\frac{N}{T}}^{+\frac{N}{T}}\mathcal Ff(s)e^{2\pi i x s}ds|<\epsilon. If Ff\mathcal Ff is L1L^1 (this is ensured when fSf\in \mathcal S), then one can further enlarge NN to make +Ff(s)e2πisxdsNTNTFf(s)e2πisxds<ϵ|\int_{-\infty}^{+\infty}Ff(s)e^{2\pi i s x}ds - \int_{-\frac{N}{T}}^{\frac{N}{T}}\mathcal Ff(s)e^{2\pi i s x}ds|<\epsilon. It follows that by letting TT\to \infty, we get

The Plancherel identity

Apply the Parsval identity to fTf_T we get 1TT2T2fT(x)2dx=n=+fT^(n)2\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}|f_T(x)|^2dx = \sum_{n = -\infty}^{+\infty}|\widehat{f_T}(n)|^2. By the periodization lemma we get 1TT2T2fT(x)2dx=n=+1TFf(nT)2    T2T2fT(x)2dx=n=+Ff(Tn)21T\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}|f_T(x)|^2dx = \sum_{n = -\infty}^{+\infty}|\frac{1}{T}\mathcal Ff(\frac{n}{T})|^2 \implies \int_{-\frac{T}{2}}^{\frac{T}{2}}|f_T(x)|^2 dx = \sum_{n = -\infty}^{+\infty}|\mathcal Ff(\frac{T}{n})|^2 \cdot \frac{1}{T}. The RHS, as a Riemann sum of , goes to +Ff(s)2ds\int_{-\infty}^{+\infty}|\mathcal Ff(s)|^2ds when TT\to \infty; the LHS goes to +f(x)2dx\int_{-\infty}^{+\infty}|f(x)|^2 dx by uniform convergence and previous argument. We have derived

More generally, the Plancherel theorem is true for all L2L^2 functions ff on R\mathbb{R} such that Ff\mathcal Ff is L2L^2. This is because S\mathcal S is dense in L2L^2.

Appendix: The inverse Fourier transform of sinc\mathrm{sinc}

Proof. (1) change of variable y=xay = \frac{x}{a}, note that here one needs to pay attention to the sign of aa.

(2) Integration by parts twice.