Equidistribution theorem ¶ Let γ be an irrational number. The equidistribution theorem says that the sequence γ , 2 γ , ⋯ \gamma, 2\gamma,\cdots γ , 2 γ , ⋯ mod 1 is uniformly distributed on T \mathbb{T} T .
Lemma ¶ For every f ∈ C 0 ( T ) f\in \mathscr{C}^0(\mathbb{T}) f ∈ C 0 ( T ) , lim n → ∞ ∑ k = 1 n − 1 f ( k γ ) n = ∫ 0 1 f ( x ) d x \lim_{n\to \infty}\frac{\sum_{k = 1}^{n-1} f(k\gamma)}{n} = \int_{0}^1 f(x)dx lim n → ∞ n ∑ k = 1 n − 1 f ( kγ ) = ∫ 0 1 f ( x ) d x .
Proof. Let A A A be the set of functions on T \mathbb{T} T such that the equality holds, then it sufficies to show that A A A contains all continuous functions. It’s easy to observe that A A A is closed under linear combination. Then it sufficies to show the following:
A contains e 2 π i m θ e^{2\pi i m \theta} e 2 πim θ for m ∈ Z m\in \mathbb{Z} m ∈ Z . A is closed under taking uniform limits, in other words, if F N ∈ A F_N \in A F N ∈ A , F N → F F_N\to F F N → F uniformly, then F ∈ A F\in A F ∈ A . We first show that A A A is closed under uniform limits. Let F N , F F_N,F F N , F be chosen as above. We must show that ∣ ∫ 0 1 F ( x ) d x − ∑ k = 1 n − 1 F ( k γ ) n ∣ → 0 |\int_{0}^1 F(x)dx - \frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \to 0 ∣ ∫ 0 1 F ( x ) d x − n ∑ k = 1 n − 1 F ( kγ ) ∣ → 0 when n → ∞ n\to \infty n → ∞ . Let ϵ > 0 \epsilon > 0 ϵ > 0 , choose N N N such that sup x ∈ [ 0 , 1 ] ∣ F N ( x ) − F ( x ) ∣ < ϵ \sup_{x\in [0,1]} |F_N(x) - F(x)|<\epsilon sup x ∈ [ 0 , 1 ] ∣ F N ( x ) − F ( x ) ∣ < ϵ . Then
∣ ∫ 0 1 F ( x ) d x − ∑ k = 1 n − 1 F ( k γ ) n ∣ ≤ ∣ ∫ 0 1 F ( x ) d x − ∫ 0 1 F N ( x ) d x ∣ + ∣ ∫ 0 1 F N ( x ) d x − ∑ k = 1 n − 1 F N ( k γ ) n ∣ + ∣ ∑ k = 1 n − 1 F N ( k γ ) n − ∑ k = 1 n − 1 F ( k γ ) n ∣ ≤ ϵ + ϵ + ∣ ∫ 0 1 F N ( x ) d x − ∑ k = 1 n − 1 F N ( k γ ) n ∣ , \begin{split}
&|\int_{0}^1 F(x)dx - \frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \\
&\leq |\int_{0}^1 F(x)dx - \int_{0}^1 F_N(x)dx|+|\int_{0}^1 F_N(x)dx -\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n}|+ |\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n} -\frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \\
&\leq \epsilon + \epsilon + |\int_{0}^1 F_N(x)dx -\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n}|,
\end{split} ∣ ∫ 0 1 F ( x ) d x − n ∑ k = 1 n − 1 F ( kγ ) ∣ ≤ ∣ ∫ 0 1 F ( x ) d x − ∫ 0 1 F N ( x ) d x ∣ + ∣ ∫ 0 1 F N ( x ) d x − n ∑ k = 1 n − 1 F N ( kγ ) ∣ + ∣ n ∑ k = 1 n − 1 F N ( kγ ) − n ∑ k = 1 n − 1 F ( kγ ) ∣ ≤ ϵ + ϵ + ∣ ∫ 0 1 F N ( x ) d x − n ∑ k = 1 n − 1 F N ( kγ ) ∣ , then choose n n n large enough so that the rest term < ϵ <\epsilon < ϵ .
To show that A A A contains e 2 π i m θ e^{2\pi i m \theta} e 2 πim θ , observe that in this case ∑ k = 1 n − 1 f ( k γ ) = ∑ k = 1 n − 1 ω k {\sum_{k = 1}^{n-1} f(k\gamma)} =\sum_{k = 1}^{n-1} \omega^k ∑ k = 1 n − 1 f ( kγ ) = ∑ k = 1 n − 1 ω k , where ω = e 2 π i m γ \omega = e^{2\pi i m \gamma} ω = e 2 πimγ . Since γ is not rational, ω ≠ 1 \omega\neq 1 ω = 1 for every m ∈ Z m\in \mathbb{Z} m ∈ Z so that ∑ k = 0 n − 1 ω k = 1 − ω n 1 − ω \sum_{k = 0}^{n-1}\omega^k = \frac{1-\omega^n}{1-\omega} ∑ k = 0 n − 1 ω k = 1 − ω 1 − ω n . Then ∣ ∑ k = 1 n − 1 f ( k γ ) n ∣ ≤ 1 n 2 1 − ω → 0 |\frac{\sum_{k = 1}^{n-1} f(k\gamma)}{n}|\leq \frac{1}{n}\frac{2}{1-\omega}\to 0 ∣ n ∑ k = 1 n − 1 f ( kγ ) ∣ ≤ n 1 1 − ω 2 → 0 . This shows e 2 π i m θ ∈ A e^{2\pi i m \theta}\in A e 2 πim θ ∈ A for every m ∈ Z m\in \mathbb{Z} m ∈ Z .
The above argument works when 1 − ω = 1 − e 2 π i m γ ≠ 0 1-\omega = 1 - e^{2\pi i m \gamma}\neq 0 1 − ω = 1 − e 2 πimγ = 0 .
If γ is rational, say γ = p q \gamma = \frac{p}{q} γ = q p for p , q ∈ Z p,q\in \mathbb{Z} p , q ∈ Z and q ≠ 0 q\neq 0 q = 0 . Then e 2 π i k q θ e^{2\pi i kq\theta} e 2 πik qθ is not in A A A .
Now, since every continuous function on T \mathbb{T} T is a uniform limit of trignomic polynomials (Fejer theorem), we conclude that C 0 ( T ) ⊂ A \mathscr{C}^0(\mathbb{T})\subset A C 0 ( T ) ⊂ A , the lemma is proved.
Now it reduces to show that χ ( a , b ) ∈ A \chi_{(a,b)}\in A χ ( a , b ) ∈ A . Let f ϵ + , f ϵ − f_{\epsilon}^+,f_{\epsilon}^- f ϵ + , f ϵ − be continuous piecewise linear functions defined by
f ϵ − ( x ) = { 1 , x ∈ ( a + ϵ , b − ϵ ) 0 , x ≤ a or x ≥ b linear , else
f_{\epsilon}^-(x) = \begin{cases}
1, x\in(a+\epsilon, b - \epsilon) \\
0, x \leq a \text{ or } x \geq b\\
\text{linear}, \text{else}
\end{cases} f ϵ − ( x ) = ⎩ ⎨ ⎧ 1 , x ∈ ( a + ϵ , b − ϵ ) 0 , x ≤ a or x ≥ b linear , else
and similarly
f ϵ + ( x ) = { 1 , x ∈ ( a , b ) 0 , x ≤ a − ϵ or x ≥ b + ϵ linear , else
f^+_\epsilon(x) = \begin{cases}
1, x \in (a , b) \\
0, x \leq a - \epsilon \text{ or } x \geq b + \epsilon \\
\text{linear}, \text{else}
\end{cases} f ϵ + ( x ) = ⎩ ⎨ ⎧ 1 , x ∈ ( a , b ) 0 , x ≤ a − ϵ or x ≥ b + ϵ linear , else
(see page 110, figure 3 of Stein-Shakarchi for graph) then by definition they satisfy
Properties of
f ϵ − f_\epsilon^- f ϵ − and
f ϵ + f_{\epsilon}^+ f ϵ + f ϵ − ≤ χ ( a , b ) ≤ f ϵ + f_{\epsilon}^- \leq \chi_{(a,b)}\leq f_{\epsilon}^+ f ϵ − ≤ χ ( a , b ) ≤ f ϵ + ∫ 0 1 ( f ϵ + − f ϵ − ) d x < 2 ϵ \int_{0}^1 (f_\epsilon^+ - f_{\epsilon}^-)dx <2\epsilon ∫ 0 1 ( f ϵ + − f ϵ − ) d x < 2 ϵ ∫ 0 1 f ϵ − ≤ b − a ≤ ∫ 0 1 f ϵ + < ∫ 0 1 f ϵ − + 2 ϵ . \int_{0}^1f_{\epsilon}^- \leq b-a \leq \int_{0}^1 f_\epsilon^+ <\int_{0}^1f_\epsilon^-+2\epsilon. ∫ 0 1 f ϵ − ≤ b − a ≤ ∫ 0 1 f ϵ + < ∫ 0 1 f ϵ − + 2 ϵ . Let S N : = 1 N ∑ n = 1 N χ ( a , b ) ( n γ ) S_N:=\frac{1}{N}\sum_{n = 1}^N \chi_{(a,b)}(n\gamma) S N := N 1 ∑ n = 1 N χ ( a , b ) ( nγ ) . By (4) , 1 N ∑ n = 1 N f ϵ − ( n γ ) ≤ S N ≤ 1 N ∑ n = 1 N f ϵ + ( n γ ) \frac{1}{N}\sum_{n = 1}^N f_{\epsilon}^-(n\gamma)\leq S_N\leq\frac{1}{N}\sum_{n = 1}^N f_\epsilon^+(n\gamma) N 1 ∑ n = 1 N f ϵ − ( nγ ) ≤ S N ≤ N 1 ∑ n = 1 N f ϵ + ( nγ ) .
Apply the lemma, for N N N large enough we have 1 N ∑ n = 1 N f ϵ + ( n γ ) ≤ ∫ 0 1 f ϵ + + ϵ \frac{1}{N}\sum_{n = 1}^N f_\epsilon^+(n\gamma) \leq \int_{0}^1 f_\epsilon^+ + \epsilon N 1 ∑ n = 1 N f ϵ + ( nγ ) ≤ ∫ 0 1 f ϵ + + ϵ and 1 N ∑ n = 1 N f ϵ − ( n γ ) > ∫ 0 1 f ϵ − − ϵ \frac{1}{N}\sum_{n = 1}^N f_\epsilon^-(n\gamma) > \int_{0}^1 f_\epsilon^- - \epsilon N 1 ∑ n = 1 N f ϵ − ( nγ ) > ∫ 0 1 f ϵ − − ϵ , so
∫ 0 1 f ϵ − − ϵ < S N < ∫ 0 1 f ϵ + + ϵ < ∫ 0 1 f ϵ − + 3 ϵ .
\int_{0}^1 f_{\epsilon}^- - \epsilon < S_N < \int_{0}^1 f_\epsilon^+ + \epsilon < \int_{0}^1 f_\epsilon^- + 3\epsilon. ∫ 0 1 f ϵ − − ϵ < S N < ∫ 0 1 f ϵ + + ϵ < ∫ 0 1 f ϵ − + 3 ϵ . By (6) ,
b − a − 3 ϵ < S N < b − a + 3 ϵ . b - a - 3\epsilon < S_N < b-a+3\epsilon. b − a − 3 ϵ < S N < b − a + 3 ϵ . This implies lim N → ∞ S N = b − a \lim_{N\to \infty}S_N = b-a lim N → ∞ S N = b − a .
Weyl criterion ¶ A natural question to ask is how about a general sequence γ n \gamma_n γ n on [ 0 , 1 ] [0,1] [ 0 , 1 ] instead of n γ n \gamma nγ .
From the argument above we see that the key was to show that the associate set A A A contains e 2 π i n x e^{2\pi i n x} e 2 πin x for all n ∈ Z n \in \mathbb{Z} n ∈ Z . Then we obtain
Theorem (Weyl criterion) ¶ A sequence γ n \gamma_n γ n is equidistributed on T \mathbb{T} T if and only if for all non-zero k ∈ Z k\in \mathbb{Z} k ∈ Z ,
1 N ∑ n = 1 N e 2 π i k γ n → 0 , N → ∞ . \frac{1}{N}\sum_{n = 1}^N e^{2\pi i k \gamma_n}\to 0, N \to \infty. N 1 n = 1 ∑ N e 2 πik γ n → 0 , N → ∞.