Lecture 7

Equidistribution theorem

Let γ be an irrational number. The equidistribution theorem says that the sequence γ,2γ,\gamma, 2\gamma,\cdots mod 1 is uniformly distributed on T\mathbb{T}.

Lemma

For every fC0(T)f\in \mathscr{C}^0(\mathbb{T}), limnk=1n1f(kγ)n=01f(x)dx\lim_{n\to \infty}\frac{\sum_{k = 1}^{n-1} f(k\gamma)}{n} = \int_{0}^1 f(x)dx.

Proof. Let AA be the set of functions on T\mathbb{T} such that the equality holds, then it sufficies to show that AA contains all continuous functions. It’s easy to observe that AA is closed under linear combination. Then it sufficies to show the following:

  • A contains e2πimθe^{2\pi i m \theta} for mZm\in \mathbb{Z}.
  • A is closed under taking uniform limits, in other words, if FNAF_N \in A, FNFF_N\to F uniformly, then FAF\in A.

We first show that AA is closed under uniform limits. Let FN,FF_N,F be chosen as above. We must show that 01F(x)dxk=1n1F(kγ)n0|\int_{0}^1 F(x)dx - \frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \to 0 when nn\to \infty. Let ϵ>0\epsilon > 0, choose NN such that supx[0,1]FN(x)F(x)<ϵ\sup_{x\in [0,1]} |F_N(x) - F(x)|<\epsilon. Then

01F(x)dxk=1n1F(kγ)n01F(x)dx01FN(x)dx+01FN(x)dxk=1n1FN(kγ)n+k=1n1FN(kγ)nk=1n1F(kγ)nϵ+ϵ+01FN(x)dxk=1n1FN(kγ)n,\begin{split} &|\int_{0}^1 F(x)dx - \frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \\ &\leq |\int_{0}^1 F(x)dx - \int_{0}^1 F_N(x)dx|+|\int_{0}^1 F_N(x)dx -\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n}|+ |\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n} -\frac{\sum_{k = 1}^{n-1}F(k\gamma)}{n}| \\ &\leq \epsilon + \epsilon + |\int_{0}^1 F_N(x)dx -\frac{\sum_{k = 1}^{n-1}F_N(k\gamma)}{n}|, \end{split}

then choose nn large enough so that the rest term <ϵ<\epsilon.

To show that AA contains e2πimθe^{2\pi i m \theta}, observe that in this case k=1n1f(kγ)=k=1n1ωk{\sum_{k = 1}^{n-1} f(k\gamma)} =\sum_{k = 1}^{n-1} \omega^k, where ω=e2πimγ\omega = e^{2\pi i m \gamma}. Since γ is not rational, ω1\omega\neq 1 for every mZm\in \mathbb{Z} so that k=0n1ωk=1ωn1ω\sum_{k = 0}^{n-1}\omega^k = \frac{1-\omega^n}{1-\omega}. Then k=1n1f(kγ)n1n21ω0|\frac{\sum_{k = 1}^{n-1} f(k\gamma)}{n}|\leq \frac{1}{n}\frac{2}{1-\omega}\to 0. This shows e2πimθAe^{2\pi i m \theta}\in A for every mZm\in \mathbb{Z}.

Now, since every continuous function on T\mathbb{T} is a uniform limit of trignomic polynomials (Fejer theorem), we conclude that C0(T)A\mathscr{C}^0(\mathbb{T})\subset A, the lemma is proved.

Now it reduces to show that χ(a,b)A\chi_{(a,b)}\in A. Let fϵ+,fϵf_{\epsilon}^+,f_{\epsilon}^- be continuous piecewise linear functions defined by

fϵ(x)={1,x(a+ϵ,bϵ)0,xa or xblinear,else f_{\epsilon}^-(x) = \begin{cases} 1, x\in(a+\epsilon, b - \epsilon) \\ 0, x \leq a \text{ or } x \geq b\\ \text{linear}, \text{else} \end{cases}

and similarly

fϵ+(x)={1,x(a,b)0,xaϵ or xb+ϵlinear,else f^+_\epsilon(x) = \begin{cases} 1, x \in (a , b) \\ 0, x \leq a - \epsilon \text{ or } x \geq b + \epsilon \\ \text{linear}, \text{else} \end{cases}

(see page 110, figure 3 of Stein-Shakarchi for graph) then by definition they satisfy

Let SN:=1Nn=1Nχ(a,b)(nγ)S_N:=\frac{1}{N}\sum_{n = 1}^N \chi_{(a,b)}(n\gamma). By (4), 1Nn=1Nfϵ(nγ)SN1Nn=1Nfϵ+(nγ)\frac{1}{N}\sum_{n = 1}^N f_{\epsilon}^-(n\gamma)\leq S_N\leq\frac{1}{N}\sum_{n = 1}^N f_\epsilon^+(n\gamma).

Apply the lemma, for NN large enough we have 1Nn=1Nfϵ+(nγ)01fϵ++ϵ\frac{1}{N}\sum_{n = 1}^N f_\epsilon^+(n\gamma) \leq \int_{0}^1 f_\epsilon^+ + \epsilon and 1Nn=1Nfϵ(nγ)>01fϵϵ\frac{1}{N}\sum_{n = 1}^N f_\epsilon^-(n\gamma) > \int_{0}^1 f_\epsilon^- - \epsilon, so

01fϵϵ<SN<01fϵ++ϵ<01fϵ+3ϵ. \int_{0}^1 f_{\epsilon}^- - \epsilon < S_N < \int_{0}^1 f_\epsilon^+ + \epsilon < \int_{0}^1 f_\epsilon^- + 3\epsilon.

By (6),

ba3ϵ<SN<ba+3ϵ.b - a - 3\epsilon < S_N < b-a+3\epsilon.

This implies limNSN=ba\lim_{N\to \infty}S_N = b-a.

Weyl criterion

A natural question to ask is how about a general sequence γn\gamma_n on [0,1][0,1] instead of nγn \gamma. From the argument above we see that the key was to show that the associate set AA contains e2πinxe^{2\pi i n x} for all nZn \in \mathbb{Z}. Then we obtain

Theorem (Weyl criterion)

A sequence γn\gamma_n is equidistributed on T\mathbb{T} if and only if for all non-zero kZk\in \mathbb{Z},

1Nn=1Ne2πikγn0,N.\frac{1}{N}\sum_{n = 1}^N e^{2\pi i k \gamma_n}\to 0, N \to \infty.