Lecture 6

Today we study some corollaries of mean square convergence and applications.

Parsval identity

fL22=fSNfL22+SNfL22SNfL22=i=NNf^(n)2\|f\|_{L^2}^2 = \|f - S_N f\|_{L^2}^2 + \|S_N f\|^2_{L^2} \geq \|S_N f\|_{L^2}^2 = \sum_{i = -N}^N |\hat{f}(n)|^2. This is the special case of Bessel inequality.

Then the series n=+f^(n)2\sum_{n = -\infty}^{+\infty}|\hat{f}(n)|^2 converges. Since fSNf20\|f - S_N f\|^2 \to 0, we obtain

Parsval’s identity

Let fL2(T)f\in L^2(\mathbb{T}). Then f2=n=+f^(n)2\|f\|^2 = \sum_{n = -\infty}^{+\infty}|\hat{f}(n)|^2.

Riemann-Lebesgue lemma

The Riemann-Lebesgue lemma states that if fL1(T)f\in L^1(\mathbb{T}) then f^(n)0|\hat{f}(n)|\to 0 when n|n|\to \infty. In particular, this implies that for an integrable function on the circle, 02πf(x)sin(nx)dx0\int_{0}^{2\pi }f(x)\sin(nx) dx \to 0 and 02πf(x)cos(nx)0\int_{0}^{2\pi}f(x)\cos(nx)\to 0 when n|n|\to \infty.

Proof.

If ff is continuous, then the Parsval identity implies the positive infinite series N=+f^(n)=fL2+\sum_{N = -\infty}^{+\infty}|\hat{f}(n)| = \|f\|_{L^2}\leq +\infty so this implies f^(n)0|\hat{f}(n)|\to 0 when n|n|\to \infty.

In general, let gg be a continuous function such that fgL1<ϵ\|f-g\|_{L^1}<\epsilon. Then we have f^(n)g^(n)=01(f(x)g(x))e2πinxdx01f(x)g(x)dx=fgL1<ϵ|\hat{f}(n)-\hat{g}(n)| = |\int_{0}^{1}(f(x)-g(x))e^{-2\pi i n x}dx|\leq \int_{0}^1|f(x)-g(x)|dx = \|f-g\|_{L^1} < \epsilon. So g^(n)|\hat{g}(n)|\to \infty implies f^(n)|\hat{f}(n)|\to \infty.

Wirtinger inequality

Let ff be a 2π2\pi-periodic function with mean value 0 (i.e. f^(0)=02πf(x)dx2π\hat{f}(0) = \int_{0}^{2\pi}f(x)\frac{dx}{2\pi} = 0 ). Then fL2fL2\|f'\|_{L^2}\geq \|f\|_{L^2}, i.e. 02πf(x)2dx2π02πf(x)2dx2π\int_{0}^{2\pi}|f'(x)|^2\frac{dx}{2\pi}\geq \int_{0}^{2\pi}|f(x)|^2 \frac{dx}{2\pi}.

Proof. By the derivative theorem f^(n)=inf^(n)\hat{f'}(n) = i n \hat{f}(n). Then the Parsval identity implies fL22=nZn2f^(n)2\|f'\|^2_{L^2} = \sum_{n\in \mathbb{Z}} n^2|\hat{f}(n)|^2.

We apply the simple fact that multiplying a strictly positive number by n2n^2 will make it bigger for n2|n|\geq 2 and equal when n=1|n| = 1, so when f^(0)=0\hat{f}(0) = 0, SN(f)L22=nN,n0f^(n)2nZ,n0n2f^(n)2=SN(f)L22\|S_N(f)\|_{L^2}^2 = \sum_{|n|\leq N,n\neq 0}|\hat{f}(n)|^2\leq \sum_{n\in \mathbb{Z},n\neq 0}n^2|\hat{f}(n)|^2 = \|S_N(f')\|_{L^2}^2. If f^(n)=0\hat{f}(n) = 0 for all n2|n|\geq 2, the above inequality will be equality (converse also true). Then let NN\to \infty, the left hand side goes to fL22\|f\|_{L^2}^2, the right hand side goes to fL22\|f'\|_{L^2}^2.

As remarked, the inequality holds if and only if f^(n)=0\hat{f}(n) = 0 for all nn except n=1|n|=1, so f(x)=f^(1)e2πix+f(1)e2πixf(x) = \hat{f}(1)e^{2\pi i x}+f(-1)e^{-2\pi i x}. If ff is real-valued, then f(x)=asin(x)+bcos(x)f(x) = a\sin(x)+b\cos(x).

Isoperimetric inequality

The isoperimetric inequality says of all closed curves on the plane with the same length, the circle has the largest area.

Some differential geometry

A regular curve is a C1\mathscr{C}^1 mapping γ:[a,b]R2\gamma:[a,b]\to \mathbb{R}^2, t(x(t),y(t)):=γ(t)t\mapsto (x(t),y(t)):=\gamma(t), such that γ(t)=(x(t),y(t))0\gamma'(t) =(x'(t),y'(t))\neq \mathbf{0} for every t[a,b]t\in [a,b]. Here the C1\mathscr{C}^1 means both x(t)x(t) and y(t)y(t) has continuous first derivatives.

The length of the curve is given by the line integral abγ(t)dt=ab(x(t)2+y(t)2)dt\int_{a}^b |\gamma'(t)|dt = \int_{a}^b \sqrt{(x'(t)^2+y'(t)^2)}dt.

A reparametrization of the curve is determined by composition γ(t(s)):[c,d]R2\gamma(t(s)):[c,d]\mapsto \mathbb{R}^2, where t(s)t(s) is a C1\mathscr{C}^1 function s[c,d]t(s)[a,b]s\in [c,d]\mapsto t(s)\in [a,b], such that t(c)=a,t(b)=dt(c) = a, t(b) = d and t(s)0t'(s)\neq 0 for every ss. In particular, t(s)t(s) is invertible, and either strictly increasing or strictly decreasing. If t(s)>0t'(s)> 0, the reparametrization keeps orientation, and reverses the orientation if t(s)<0t'(s)< 0.

The length ll of a curve is invariant under reparametrization.

An arc-length parametrization of the curve CC is γ(s):[0,l]C\gamma(s):[0,l]\to C such that γ(s)1|\gamma'(s)|\equiv 1. Any regular curve can be arc-length parametrized. To see this, let γ(t):[a,b]C\gamma(t):[a,b]\to C be any parametrization of the curve. Let s(t)=atγ(x)dxs(t) = \int_{a}^t |\gamma'(x)|dx be the length up to γ(t)\gamma(t). For every t0(a,b)t_0\in (a,b), s(t0)=γ(t0)0s'(t_0) = |\gamma'(t_0)|\neq 0 because the curve is regular, then by the inverse function theorem, the function s(t)s(t) has inverse, denoted by t(s)t(s) such that s(t(s))=ss(t(s)) = s, on a neighbourhood of s(t0)s(t_0). Repeating this step we get a reparemetrization γ(t(s))\gamma(t(s)), which is piecewisely defined on [0,l][0,l], such that ddsγ(t(s))=γ(t(s))t(s)=γ(t(s))1γ(t(s))=1|\frac{d}{ds}\gamma(t(s))| = |\gamma'(t(s))||t'(s)| = |\gamma'(t(s))|\frac{1}{|\gamma'(t(s))|} = 1. This is the arc-length parametrization of CC.

A curve γ(t)\gamma(t) is closed provided that γ(a)=γ(b)\gamma(a) = \gamma(b). A simple closed curve is a closed curve without self intersection. Let CC be a regular simple closed curve, then CC surronds a domain DD with D=C\partial D = C. By the Green formula, the area of DD can be calculated by the line integral 12Cxdyydx\frac{1}{2}|\int_Cxdy - ydx|. One can also verify this by Stokes theorem.

Statement and proof of isoperimetric inequality

Theorem

Let CC be a simple closed curve on R2\mathbb{R}^2 with length ll. Let AA be the area of the region enclosed by CC. Then l24πAl^2\geq 4\pi A, and the equality holds if and only if CC is a circle.

Proof of Isoperimetric inequality

Proof of inequality

We prove the basic case when l=2πl=2\pi, so the inequality reduces to AπA\leq \pi. The general case follows directly from the basic case by scaling.

If CC is the unit circle, then l=2πl=2\pi, A=πA = \pi so 4πA=4π2=l24\pi A = 4\pi^2 = l^2.

Let CC be a C1\mathscr{C}^1 curve.

Let γ(s):[0,2π]\gamma(s):[0,2\pi] be the arc-length parametrization of CC. Write γ(s)=(x(s),y(s))\gamma(s) = (x(s),y(s)), then x(s),y(s)C1(S1)x(s), y(s)\in \mathscr{C}^1(S^1). Since γ(s)\gamma(s) is arc-length parametrization, we have γ(s)1|\gamma'(s)|\equiv 1 i.e. x(s)2+y(s)21x'(s)^2 + y'(s)^2 \equiv 1, so 12π02πx(s)2+y(s)2dx=1\frac{1}{2\pi}\int_{0}^{2\pi}x'(s)^2 + y'(s)^2 dx = 1, this implies

x2+y2=1,\|x'\|^2 + \|y'\|^2 = 1,

where \|\cdot\| denote the L2L^2-norm on the circle.

By (1),

A=12Cxdyydx=122π12π02π(x(s)y(s)y(s)x(s))ds=π(x,y)(y,x)\begin{split} A &= \frac{1}{2}|\int_C xdy - ydx| \\ &=\frac{1}{2}\cdot 2\pi \cdot |\frac{1}{2\pi}\int_0^{2\pi}(x(s)y'(s) - y(s)x'(s))ds|\\ & = \pi|(x,y') - (y,x')| \end{split}

where ()(\cdot) is the inner product of functions on the circle. We want to show that A2πA\leq 2\pi, so it reduces to show that (x,y)(y,x)1|(x,y') - (y,x')|\leq 1 and find condition of equality.

Since x(s),y(s)x(s),y(s) are C1\mathscr{C}^1 functions, x(s)=n=+aneinsx(s) = \sum_{n = -\infty}^{+\infty}a_ne^{ins} and y(s)=n=+bneinsy(s) = \sum_{n = -\infty}^{+\infty}b_n e^{ins}. By the derivative theorem, x(s)=n=+anineinsx'(s) = \sum_{n = -\infty}^{+\infty}a_nin e^{ins} and y(s)=n=+bnineinsy'(s) = \sum_{n = -\infty}^{+\infty}b_n in e^{ins}. Note that here writing “=” is an abuse of notation because the Fourier series of xx' and yy' may not converge pointwise but here we just use it to calculate integrals, which will not cause problem.

Then the Parsval identity and (2) implies n=+n2(an2+bn2)=1\sum_{n = -\infty}^{+\infty}n^2(|a_n|^2+|b_n|^2) = 1. Moreover, (x,y)=n=+aninbn(x,y') = \sum_{n = -\infty}^{+\infty}a_n \overline{inb_n}, (y,x)=n=+bninan(y,x') = \sum_{n = -\infty}^{+\infty} b_n \overline{in a_n} (this is a generalization of the finite dimensional identity, but can be proved using Paraval and the polarization identity), see Page 81, lemma 1.5 of Stein-Shakarchi).

Now we can write

(x,y)(y,x)=n=+n(anbnbnan)(a)n=+n2anbn(b)n=+n(an2+bn2)(c)n=+n2(an2+bn2)=1.\begin{split} |(x,y') - (y,x)|&=|\sum_{n = -\infty}^{+\infty}n (a_n\overline{b_n} - b_n\overline{a_n})| \\ (a)&\leq \sum_{n = -\infty}^{+\infty} n \cdot 2|a_n||b_n| \\ (b)&\leq \sum_{n = -\infty}^{+\infty} n (|a_n|^2 + |b_n|^2)\\ (c)&\leq \sum_{n = -\infty}^{+\infty} n^2 (|a_n|^2 + |b_n|^2) \\ &= 1. \end{split}

The inequality has been proved.

Condition of equality

Now we analyze the condition when the equality holds. First, if CC is a circle, we know the equality holds. Conversely, suppose the equality hold, necessarily the (a)(b)(c) part should take equal.

When (c)(c) takes “=”, the summation should not have any term with n2|n|\geq 2. So x(s)=a0+a1eis+a1eisx(s) = a_0 + a_1e^{is} + a_{-1}e^{-is}, y(s)=b0+b1eis+b1eisy(s) = b_0 + b_1 e^{is} + b_{-1}e^{-is}. Note that x,yx,y are real functions, so a1=a1a_{-1} = \overline{a_1}, b1=b1b_{-1} = \overline{b_1}, a0a_0 and b0b_0 are real. Let a1=r1eiαa_1 = r_1 e^{i\alpha}, b1=r2eiβb_1 = r_2 e^{-i\beta}. Then x(s)=a0+r1cos(α+s)x(s) = a_0 + r_1 \cos(\alpha + s), y=b0+r2cos(β+s)y = b_0 + r_2 \cos(\beta + s). Now to show that γ(s)=(x(s),y(s))\gamma(s) = (x(s),y(s)) is a circle, it reduces to show that r1=r2r_1 = r_2 and αβ=kπ2\alpha - \beta = \frac{k\pi}{2}. These shall follow from equality (b) and (a).

When (b)(b) takes “=”, we conclude that a1=b1|a_1| = |b_1|, this implies r1=r2=12r_1 = r_2 = \frac{1}{2}.

When (a)(a) takes “=”, by writing the equation explicitly we get a1b1b1a1=2a1b1=21212=12|a_1\overline{b_1} - b_1 \overline{a_1}| = 2|a_1||b_1| = 2\cdot \frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2}. Then plug in a1=12eiαa_1 = \frac{1}{2}e^{i\alpha} and b1=12eiβb_1 = \frac{1}{2}e^{i\beta} to the left hand side we get 142isin(αβ)=12|\frac{1}{4}\cdot 2i \sin(\alpha- \beta)| = \frac{1}{2}, so sin(αβ)=1|\sin(\alpha - \beta)| = 1. This implies αβ=kπ2\alpha - \beta = \frac{k\pi}{2}. The proof is complete.

Proof of isoperimetric inequality using Wirtinger’s inequality

Still, we consider the basic case l=2πl = 2\pi and take arc-length parametrization (x(t),y(t))(x(t),y(t)) of CC. The idea is to apply Wirtinger’s inequality to x(t)x(t), so we need its mean value to be zero, this can be done by replacing x(t)x(t) by x(t)02πx(t)dtx(t)-\int_{0}^{2\pi}x(t)dt.

Also, the area A=12Cxdyydx=02πxdyA = \frac{1}{2}\int_{C}xdy - ydx = \int_{0}^{2\pi}xdy. To see this, integration by parts implies Cxdy=02πx(t)dy(t)=x(t)y(t)02π02πy(t)dx(t)=0Cydx\int_C xdy = \int_{0}^{2\pi}x(t)dy(t) = x(t)y(t)|_{0}^{2\pi} - \int_{0}^{2\pi}y(t)dx(t) = 0 - \int_C ydx.

Hence

l24πA=4π24πA=2π02π(x2(t)+y2(t))dt4π02πx(t)y(t)dt=2π02π(x2+y22xy)dt=2π02π[(x2x2)+(y22xy+x2)]dt=2π(xL22xL22)+2π02π(yx)2dt\begin{split} l^2 - 4\pi A &= 4\pi^2 - 4\pi A \\ & = 2\pi \int_{0}^{2\pi}(x'^2(t)+y'^2(t))dt -4\pi \int_{0}^{2\pi}x(t)y'(t)dt \\ & = 2\pi \int_0^{2\pi}(x'^2+y'^2-2xy')dt \\ & = 2\pi \int_{0}^{2\pi} [(x'^2 - x^2) + (y'^2 - 2xy'+x^2)]dt \\ & = 2\pi (\|x'\|_{L^2}^2 - \|x\|_{L^2}^2) + 2\pi \int_{0}^{2\pi}(y'-x)^2 dt \end{split}

The first term is 0\geq 0 by Wirtinger inequality, the second is automatically 0\geq 0. If the curve CC acheives equality l2=4πAl^2 = 4\pi A, then both terms should be zero. The first term is zero when x(t)=asint+bcostx(t) = a \sin t + b \cos t; The second term is zero when y=xy' = x, i.e. y=acost+bsinty = -a \cos t + b \sin t. Then x2+y2=1x'^2+y'^2 = 1 implies a2+b2=1a^2+b^2 = 1, so a=sinα,b=cosαa = \sin \alpha, b = \cos\alpha for some α. So x(t)=cos(tα),y(t)=sin(tα)x(t) = \cos(t-\alpha), y(t) = \sin(t - \alpha).