Mock exam

Problem 1

For 0r<10\leq r < 1 we define Pr(θ)=n=+rneinθP_r(\theta) = \sum_{n = -\infty}^{+\infty}r^{|n|}e^{in\theta} for θ[π,π]\theta \in [-\pi,\pi].

  1. Prove that the series defining Pr(θ)P_r(\theta) converges absolutely and uniformly on [π,π][-\pi,\pi].
  2. Prove that Pr(θ)P_r(\theta) is smooth.
  3. The Laplacian operator in polar coordinate is given by Δf=2fr2+1rfr+1r22fθ2\Delta f = \frac{\partial^2 f}{\partial r^2}+\frac{1}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2}, show that ΔPr(θ)=0\Delta P_r(\theta) = 0 on D{0}\mathbb{D}\setminus \{0\}.
  4. Let ff be a continuous function on the circle and dkdθk[f]\frac{d^k}{d\theta^k}[f] be its kk-th derivative in sense of distribution. Note that this gives a 2π2\pi-periodic distribution.
    • Find its Fourier transform.
    • Show that dkdθk[f]Pr(θ)\frac{d^k}{d\theta^k}[f]*P_r(\theta) is harmonic on D\mathbb D.

Problem 2

Let Π(x)\Pi(x) be the function Π(x)={1,12<x<120,else\Pi(x) = \begin{cases}1,-\frac{1}{2}<x<\frac{1}{2}\\ 0, else \end{cases} on R\mathbb{R}.

  1. Calculate FΠ,ΠΠ\mathcal F\Pi, \Pi*\Pi and F(ΠΠ)\mathcal F(\Pi*\Pi).
  2. Prove n=+1(n+14)2=2π2\sum_{n = -\infty}^{+\infty}\frac{1}{(n+\frac{1}{4})^2} = 2\pi^2. (Hint: Apply the Poisson summation formula to 1).

Problem 3

  1. Let S(Rd)\mathcal S(\mathbb{R}^d) be the space of Schwartz functions on Rd\mathbb{R}^d. Show that for fS(Rd)f\in \mathcal S(\mathbb{R}^d), there exists a unique uS(Rd)u\in \mathcal{S}(\mathbb{R}^d) such that Δu+u=f\Delta u + u = f.
  2. For real a>0a>0, define the operator (Δ)af(x)=Rd(2πξ)2aFf(ξ)e2πiξ,xdξ(-\Delta)^af(x) = \int_{\mathbb{R}^d} (2\pi |\xi|)^{2a} \mathcal Ff(\xi) e^{2\pi i \langle \xi,x\rangle}d\xi. Show that (Δ)af=(Δf)a(-\Delta)^af=(-\Delta f)^a for an integer aa.

Errordum.

  • In 1 the Δ should be Δ-\Delta.
  • In 2 the right hand side should be [11++nn][(11++nn)]f[-\partial_{11}+\cdots+\partial_{nn}]\cdots[-(\partial_{11}+\cdots+\partial_{nn})] f, aa times.

Problem 4

Let f,gf,g be real functions on Z/(N)\mathbb{Z}/(N). The discrete convolution of ff and gg is given by fNg(m)=k=0N1f(mk)g(k)f*_Ng(m) = \sum_{k = 0}^{N-1}f(m-k)g(k).

  1. Prove that fNg=gNff*_Ng = g*_N f.
  2. Prove the convolution theorem fNg^=f^g^\widehat{f*_N g} = \hat{f}\hat{g}, where f^\hat{f} denotes the discrete Fourier transform on Z/(N)Z/(N).
  3. Show that one needs at most O(NlogN)O(N\log N) operations to calculate convolution on Z/(N)Z/(N). (Hint: Convolution can be calculated by the inverse Fourier transform of f^g^\hat{f}\hat{g}, and one has Fast Fourier Transform algorithm to calculate Fourier transform efficiently.)

Errordum.

  • The definition of fNgf*_Ng should be replaced to 1Nf(mk)g(k)\frac{1}{N}\sum f(m-k)g(k) to make it compatible to the normalization of discrete Fourier transform. Otherwise 2 should be Nf^g^N \hat{f}\hat{g}.

Problem 5

Let f(x)f(x) be a Schwartz function. Calculate the Fourier transform of f(x)cos(ax)f(x)\cos(ax) for a>0a>0.

Problem 6

The ζ function is defined for s>1s>1 by ζ(s)=n=11ns\zeta(s) = \sum_{n =1}^{\infty}\frac{1}{n^s}. The Γ-function is defined for s>0s>0 by Γ(s)=0exxs1dx\Gamma(s) = \int_{0}^{\infty}e^{-x}x^{s-1}dx. The θ-function is given by θ(s)=n=+eπn2s\theta(s) = \sum_{n = -\infty}^{+\infty}e^{-\pi n^2s}.

  1. Verify the functional equation s12θ(1s)=θ(s)s^{-\frac{1}{2}}\theta(\frac{1}{s}) = \theta(s) whenever s>0s>0.
  2. Prove the identity πs2Γ(s2)ζ(s)=120ts21(θ(t)1)dt\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \frac{1}{2}\int_{0}^{\infty}t^{\frac{s}{2}-1}(\theta(t)-1)dt when s>1s>1.