Problem set 5

Problem 1

Show that a Schwartz function is L2L^2 on R\mathbb{R}, i.e. Rf(x)2dx<\int_{\mathbb{R}}|f(x)|^2 dx< \infty.

Problem 2

(1) Let fSf\in \mathcal S. Show that FFf=f\mathcal F \mathcal F f = f^{-}, where ff^{-} is defined by f(x)=f(x)f^-(x) = f(-x).

(2) Generate other functions than Gaussian that are fixed by Fourier transform.

Problem 3

For s>0s>0, define Γ(s)=0+xs1exdx\Gamma(s) = \int_{0}^{+\infty}x^{s-1}e^{-x}dx.

(1) Show that Γ(s)\Gamma(s) is well-defined for s>0s>0, i.e. the improper integrals 01xs1exdx\int_{0}^1 x^{s-1}e^{-x}dx and 1+xs1ex\int_{1}^{+\infty}x^{s-1}e^{-x} converges.

(2) Show that Γ(s+1)=sΓ(s)\Gamma(s+1) = s\Gamma(s) whenever s>0s>0. Conclude that Γ(n+1)=n!\Gamma(n+1) = n!.

(3) Show that Γ(12)=π\Gamma(\frac{1}{2}) = \sqrt{\pi} and Γ(32)=π2\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{2}.

Problem 4

The aim of this problem is to show that there exists a smooth function φ with compact support on R\mathbb{R} such that φ(0)>0\varphi(0)>0.

(1) Let f(t)={e1t,t>00,t0f(t) = \begin{cases} e^{-\frac{1}{t}},t> 0\\ 0, t\leq 0 \end{cases}. Show that ff is a smooth function on R\mathbb{R}.

(2) Let φ(x)=f(1x2)\varphi(x) = f(1-x^2). Show that φ(x)\varphi(x) satisfies the property.

Problem 5

Let f,gf,g be continuous functions on R\mathbb{R}. If fφ=gφ\int f\varphi = \int g\varphi for every φCc(R)\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}), then f=gf = g.

Remark. This property also holds for integrable functions.

Problem 6

Compare with problem 3 of problem set 3.

Let Λ(x)={1x,x10,else\Lambda(x) = \begin{cases} 1-|x|, |x|\leq 1\\ 0, \text{else}\end{cases}. In the lecture we have showed that the Fourier transform of Λ is sin2(πs)(πs)2=sinc2(s)\frac{\sin^2(\pi s)}{(\pi s)^2} = \mathrm{sinc}^2(s).

(1) Prove n=+1(n+α)2=π2sin2(πα)\sum_{n = -\infty}^{+\infty} \frac{1}{(n+\alpha)^2} = \frac{\pi^2}{\sin^2(\pi \alpha)} for αRZ\alpha\in \mathbb{R}\setminus \mathbb{Z}.

(2) Prove n=+1n+α=πcot(πα)\sum_{n=-\infty}^{+\infty}\frac{1}{n+\alpha} = \pi \cot(\pi \alpha) for αRZ\alpha \in \mathbb{R}\setminus \mathbb{Z}.

Problem 7

Prove the Riemann-Lebesgue lemma: If fL1(R)f\in L^1(\mathbb{R}), then limsFf(s)=0\lim_{|s|\to \infty}|\mathcal{F}f(s)| = 0.

(1) First prove the case when fCc0(R)f\in \mathscr{C}_c^0(\mathbb{R}), i.e. ff is continuous with compact support.

(2) Use L1L^1 approximation to reduce the L1L^1 case to continuous case.