Problem set 9

Problem 1

Prove frac14piDelta[log(x2+y2)]=delta\\frac{1}{4\\pi}\\Delta [\\log(x^2 + y^2)] = \\delta using three methods.

Use Cauchy kernel:

(1) Show that this is equivalent to frac1pifracpartialpartialzfracpartialpartialbarz[logz2]=delta\\frac{1}{\\pi}\\frac{\\partial}{\\partial z}\\frac{\\partial}{\\partial \\bar{z}}[\\log|z|^2] = \\delta on mathbbC\\mathbb{C} and use the Cauchy kernel fracpartialpartialbarz[frac1pifrac1z]=delta\\frac{\\partial}{\\partial \\bar{z}}[\\frac{1}{\\pi}\\frac{1}{z}] = \\delta to prove it.

Directly verify frac14piint_mathbbR2log(x2+y2)Deltavarphi;dxdy=varphi(0)\\frac{1}{4\\pi}\\int\_{\\mathbb{R}^2} \\log(x^2+y^2) \\Delta \\varphi; dxdy = \\varphi(0) for every varphiinmathscrC_cinfty(mathbbR2)\\varphi \\in \\mathscr{C}\_c^{\\infty}(\\mathbb{R}^2):

(2) Use the Laplacian operator on polar coordinate.

(3) Use the Gauss-Green formula from previous exercise.

Problem 3

Let nn be the invards normal of partialD\\partial D. Define the normal derivative partialnu\\partial_n u to be n1partialxu+n2partialyun_1\\partial_x u + n_2 \\partial_y u (which is just the directional derivative to the direction nn). Prove the Green identity int(uDeltavvDeltau)dxdy=int_partialD(upartialnvvpartialnu)ds\\int (u\\Delta v - v\\Delta u)dxdy = -\\int\_{\\partial D} (u\\partial_n v - v\\partial_n u)ds.

Problem 4

Prove that excos(ex)e^{x}\\cos(e^x) is a tempered distribution.

Problem 5

Let finL2(mathbbR)f\\in L^2(\\mathbb{R}) which is supported on [0,+infty)[0,+\\infty).

(1) Let mathcalFf(z)=int_infty+inftyf(t)e2piit(x+iy)dt\\mathcal Ff(z) = \\int\_{-\\infty}^{+\\infty}f(t)e^{-2\\pi it (x+iy)}dt. Show that mathcalFf(z)\\mathcal Ff(z) is a holomorphic function on the lower half plane, i.e. on x+iyinmathbbC:y<0{x+iy\\in \\mathbb{C}:y<0}.

(2) Show that int_infty+inftymathcalFf(x+iy)mathcalFf(x)2dxto0\\int\_{-\\infty}^{+\\infty}|\\mathcal Ff(x+iy) - \\mathcal Ff(x)|^2 dx \\to 0 when yto0y\\to 0^-.

(3) Show that int_infty+inftymathcalFf(x+iy)2leqf_L22\\int\_{-\\infty}^{+\\infty}|\\mathcal Ff(x+iy)|^2 \\leq |f|\_{L^2}^2.

(3) For xinmathbbRx\\in \\mathbb{R}, let x{x} be its fractional part, i.e. x=x[x]{x} = x - [x] where [x][x] is the largest integer leqx\\leq x. Show that F(z):=int_0+inftyte2piiztsqrttdtF(z):=\\int\_{0}^{+\\infty}{t}e^{2\\pi i z t - \\sqrt{t}}dt defines a holomorphic function on the upper half plane which is L2L^2.