Prove frac14piDelta[log(x2+y2)]=delta using three methods.
Use Cauchy kernel:
(1) Show that this is equivalent to
frac1pifracpartialpartialzfracpartialpartialbarz[log∣z∣2]=delta on mathbbC and use the Cauchy kernel fracpartialpartialbarz[frac1pifrac1z]=delta to prove it.
Directly verify frac14piint_mathbbR2log(x2+y2)Deltavarphi;dxdy=varphi(0) for every varphiinmathscrC_cinfty(mathbbR2):
(2) Use the Laplacian operator on polar coordinate.
(3) Use the Gauss-Green formula from previous exercise.
Let n be the invards normal of partialD. Define the normal derivative partialnu to be n1partialxu+n2partialyu (which is just the directional derivative to the direction n).
Prove the Green identity int(uDeltav−vDeltau)dxdy=−int_partialD(upartialnv−vpartialnu)ds.
Let finL2(mathbbR) which is supported on [0,+infty).
(1) Let mathcalFf(z)=int_−infty+inftyf(t)e−2piit(x+iy)dt. Show that mathcalFf(z) is a holomorphic function on the lower half plane, i.e. on x+iyinmathbbC:y<0.
(2) Show that int_−infty+infty∣mathcalFf(x+iy)−mathcalFf(x)∣2dxto0 when yto0−.
(3) Show that int_−infty+infty∣mathcalFf(x+iy)∣2leq∣f∣_L22.
(3) For xinmathbbR, let x be its fractional part, i.e. x=x−[x] where [x] is the largest integer leqx. Show that F(z):=int_0+inftyte2piizt−sqrttdt defines a holomorphic function on the upper half plane which is L2.