Problem set 2

Problem 1

Let DN(x):=k=NNeinxD_N(x):=\sum_{k = -N}^N e^{inx} be the Dirichlet kernel. FN:=D0++DN1NF_N:=\frac{D_0+\cdots+D_{N-1}}{N} be the Fejer kernel. Show that FN(x)=1Nsin2(Nx/2)sin2(x/2)F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}.

Problem 2

Let fL1(T)f\in L^1(\mathbb{T}). Show that the Cesaro sum σNff\sigma_N f \to f in L1L^1. In other words, ππfFNfdθ0\int_{-\pi}^\pi |f*F_N-f|d\theta\to 0 when NN\to \infty.

Problem 3

Show that in polar coordinate, Δu=2ur2+1rur+1r22uθ2\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}.

Problem 4

Show that any continuous function on an interval [a,b][a,b] can be uniformly approximated by polynomials.

Problem 5

Let f(x)f(x) be the sawtooth function defined by the periodization of

f0(x)={0,x=0π2x2,x(0,2π) f_0(x) = \begin{cases}0,x = 0\\\frac{\pi}{2} - \frac{x}{2}, x\in (0,2\pi)\end{cases}

Then ff is a periodic function with period 2π2\pi.

  1. Show that ff has jump discontinunity at 0, f(0+)=π2f(0^+) = \frac{\pi}{2} and f(0)=π2f(0^-) = -\frac{\pi}{2}.

  2. Show that the Fourier series of ff is n=1+sinnxn\sum_{n = 1}^{+\infty}\frac{\sin nx}{n}.

In lecture note 1 you have seen the Gibbs phenomenon at discontinunity of ff. It says no matter how large NN is, there exists some xNx_N near the jump (in our case, it is 0) such that SN(f)(xN)f(xN)cf(0+)f(0)2=cπ2|S_N(f)(x_N)-f(x_N)|\geq c\frac{|f(0^+)-f(0^-)|}{2} = c\cdot \frac{\pi}{2} in our case.

  1. Show that SN(f)(x)=n=1Nsinnxn=120x(DN(t)1)dtS_N(f)(x) = \sum_{n = 1}^N \frac{\sin nx}{n} = \frac{1}{2}\int_{0}^x(D_N(t) - 1)dt.

  2. Show that SN(f)S_N(f) is an increasing function on [0,πN+1][0,\frac{\pi}{N+1}].

  3. Show that the error term SN(f)(x)f(x)=120xDN(t)dtπ2S_N(f)(x) - f(x) = \frac{1}{2}\int_{0}^{x}D_N(t)dt - \frac{\pi}{2}.

Now it reduces to calculate DND_N. Like the last problem of problem set 1, we use sin((N+12)t)12t\frac{\sin((N+\frac{1}{2})t)}{\frac{1}{2}t} to approximate DN(t)D_N(t). Let sinc(t)=sintt\mathrm{sinc(t)} = \frac{\sin t}{t}, then limt0sinc(t)=1\lim_{t\to 0}\mathrm{sinc}(t) = 1.

  1. Let yN(t)=sin((N+12)t)12ty_N(t) = \frac{\sin((N+\frac{1}{2})t)}{\frac{1}{2}t}. Then DN(t)yN(t)t2sin(t2)t2sin(t2)0|D_N(t)-y_N(t)|\leq| \frac{\frac{t}{2}-\sin(\frac{t}{2}) }{\frac{t}{2}\sin(\frac{t}{2})}|\to 0 when t0t\to 0. In particular, the error of approximation does not depend on NN.

  2. Let YN(x)=120x(sin(N+12)t)t2dtY_N(x) = \frac{1}{2}\int_{0}^x \frac{(\sin(N+\frac{1}{2})t)}{\frac{t}{2}}dt. Show that YNY_N acheives its maximum at xN=πN+12x_N = \frac{\pi}{N+\frac{1}{2}}, and YN(xN)=0πsinxxY_N(x_N) = \int_{0}^\pi \frac{\sin x}{x}.

  3. Define the ‘overshoot’ of ff at the origin by limϵ0+limNsup0<x<ϵfN(x)f(x)\lim_{\epsilon \to 0^+}\lim_{N\to \infty}\sup_{0<x<\epsilon}|f_N(x) - f(x)|, show that it is equal to 0πsinxxdxπ2\int_{0}^\pi \frac{\sin x}{x}dx - \frac{\pi}{2}.