Problem 1 ¶ Let D N ( x ) : = ∑ k = − N N e i n x D_N(x):=\sum_{k = -N}^N e^{inx} D N ( x ) := ∑ k = − N N e in x be the Dirichlet kernel. F N : = D 0 + ⋯ + D N − 1 N F_N:=\frac{D_0+\cdots+D_{N-1}}{N} F N := N D 0 + ⋯ + D N − 1 be the Fejer kernel. Show that F N ( x ) = 1 N sin 2 ( N x / 2 ) sin 2 ( x / 2 ) F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)} F N ( x ) = N 1 s i n 2 ( x /2 ) s i n 2 ( N x /2 ) .
Problem 2 ¶ Let f ∈ L 1 ( T ) f\in L^1(\mathbb{T}) f ∈ L 1 ( T ) . Show that the Cesaro sum σ N f → f \sigma_N f \to f σ N f → f in L 1 L^1 L 1 . In other words, ∫ − π π ∣ f ∗ F N − f ∣ d θ → 0 \int_{-\pi}^\pi |f*F_N-f|d\theta\to 0 ∫ − π π ∣ f ∗ F N − f ∣ d θ → 0 when N → ∞ N\to \infty N → ∞ .
The result is true for any good kernel K n K_n K n . By definition, your task is to estimate a double integral. Use Fubini theorem to change the order of integration. Then you are going to estimate ∫ 0 1 ∥ f ( x − y ) − f ( x ) ∥ L 1 ∣ K n ( y ) ∣ d y \int_{0}^1\|f(x-y)-f(x)\|_{L^1}|K_n(y)|dy ∫ 0 1 ∥ f ( x − y ) − f ( x ) ∥ L 1 ∣ K n ( y ) ∣ d y .Deal with the L 1 L^1 L 1 norm: We need to show that ∫ 0 1 ∣ f ( x − y ) − f ( x ) ∣ d x → 0 \int_{0}^1|f(x-y)-f(x)|dx \to 0 ∫ 0 1 ∣ f ( x − y ) − f ( x ) ∣ d x → 0 when ∣ y ∣ → 0 |y|\to 0 ∣ y ∣ → 0 . Choose continuous g g g such that ∥ g − f ∥ L 1 \|g-f\|_{L^1} ∥ g − f ∥ L 1 is small then rewrite the integral to estimate as ∥ f ( x − y ) − g ( x − y ) + g ( x − y ) − g ( x ) + g ( x ) − f ( x ) ∥ L 1 \|f(x-y)-g(x-y)+g(x-y)-g(x)+g(x)-f(x)\|_{L^1} ∥ f ( x − y ) − g ( x − y ) + g ( x − y ) − g ( x ) + g ( x ) − f ( x ) ∥ L 1 then apply triangle inequality to reduce to the continuous case. Now apply the property of good kernel. Choose δ > 0 \delta>0 δ > 0 , rewrite the integral to ∫ − δ δ \int_{-\delta}^{\delta} ∫ − δ δ part + ∫ ( 0 , 1 ) ∖ ( − δ , δ ) \int_{(0,1)\setminus(-\delta,\delta)} ∫ ( 0 , 1 ) ∖ ( − δ , δ ) part, then... Problem 3 ¶ Show that in polar coordinate, Δ u = ∂ 2 u ∂ r 2 + 1 r ∂ u ∂ r + 1 r 2 ∂ 2 u ∂ θ 2 \Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} Δ u = ∂ r 2 ∂ 2 u + r 1 ∂ r ∂ u + r 2 1 ∂ θ 2 ∂ 2 u .
Problem 4 ¶ Show that any continuous function on an interval [ a , b ] [a,b] [ a , b ] can be uniformly approximated by polynomials.
If f ( a ) = f ( b ) f(a)=f(b) f ( a ) = f ( b ) , use Fejer theorem to uniform approximate it by trignomic polynomials. Show that e i x e^{ix} e i x can be uniformly approximated on [ − π , π ] [-\pi,\pi] [ − π , π ] by polynomials. Show that f ( a ) = f ( b ) f(a)=f(b) f ( a ) = f ( b ) is not necessary. Problem 5 ¶ Let f ( x ) f(x) f ( x ) be the sawtooth function defined by the periodization of
f 0 ( x ) = { 0 , x = 0 π 2 − x 2 , x ∈ ( 0 , 2 π )
f_0(x) = \begin{cases}0,x = 0\\\frac{\pi}{2} - \frac{x}{2}, x\in (0,2\pi)\end{cases} f 0 ( x ) = { 0 , x = 0 2 π − 2 x , x ∈ ( 0 , 2 π )
Then f f f is a periodic function with period 2 π 2\pi 2 π .
Show that f f f has jump discontinunity at 0, f ( 0 + ) = π 2 f(0^+) = \frac{\pi}{2} f ( 0 + ) = 2 π and f ( 0 − ) = − π 2 f(0^-) = -\frac{\pi}{2} f ( 0 − ) = − 2 π .
Show that the Fourier series of f f f is ∑ n = 1 + ∞ sin n x n \sum_{n = 1}^{+\infty}\frac{\sin nx}{n} ∑ n = 1 + ∞ n s i n n x .
In lecture note 1 you have seen the Gibbs phenomenon at discontinunity of f f f . It says no matter how large N N N is, there exists some x N x_N x N near the jump (in our case, it is 0) such that ∣ S N ( f ) ( x N ) − f ( x N ) ∣ ≥ c ∣ f ( 0 + ) − f ( 0 − ) ∣ 2 = c ⋅ π 2 |S_N(f)(x_N)-f(x_N)|\geq c\frac{|f(0^+)-f(0^-)|}{2} = c\cdot \frac{\pi}{2} ∣ S N ( f ) ( x N ) − f ( x N ) ∣ ≥ c 2 ∣ f ( 0 + ) − f ( 0 − ) ∣ = c ⋅ 2 π in our case.
Show that S N ( f ) ( x ) = ∑ n = 1 N sin n x n = 1 2 ∫ 0 x ( D N ( t ) − 1 ) d t S_N(f)(x) = \sum_{n = 1}^N \frac{\sin nx}{n} = \frac{1}{2}\int_{0}^x(D_N(t) - 1)dt S N ( f ) ( x ) = ∑ n = 1 N n s i n n x = 2 1 ∫ 0 x ( D N ( t ) − 1 ) d t .
Show that S N ( f ) S_N(f) S N ( f ) is an increasing function on [ 0 , π N + 1 ] [0,\frac{\pi}{N+1}] [ 0 , N + 1 π ] .
Show that the error term S N ( f ) ( x ) − f ( x ) = 1 2 ∫ 0 x D N ( t ) d t − π 2 S_N(f)(x) - f(x) = \frac{1}{2}\int_{0}^{x}D_N(t)dt - \frac{\pi}{2} S N ( f ) ( x ) − f ( x ) = 2 1 ∫ 0 x D N ( t ) d t − 2 π .
Now it reduces to calculate D N D_N D N . Like the last problem of problem set 1, we use sin ( ( N + 1 2 ) t ) 1 2 t \frac{\sin((N+\frac{1}{2})t)}{\frac{1}{2}t} 2 1 t s i n (( N + 2 1 ) t ) to approximate D N ( t ) D_N(t) D N ( t ) . Let s i n c ( t ) = sin t t \mathrm{sinc(t)} = \frac{\sin t}{t} sinc ( t ) = t s i n t , then lim t → 0 s i n c ( t ) = 1 \lim_{t\to 0}\mathrm{sinc}(t) = 1 lim t → 0 sinc ( t ) = 1 .
Let y N ( t ) = sin ( ( N + 1 2 ) t ) 1 2 t y_N(t) = \frac{\sin((N+\frac{1}{2})t)}{\frac{1}{2}t} y N ( t ) = 2 1 t s i n (( N + 2 1 ) t ) . Then ∣ D N ( t ) − y N ( t ) ∣ ≤ ∣ t 2 − sin ( t 2 ) t 2 sin ( t 2 ) ∣ → 0 |D_N(t)-y_N(t)|\leq| \frac{\frac{t}{2}-\sin(\frac{t}{2}) }{\frac{t}{2}\sin(\frac{t}{2})}|\to 0 ∣ D N ( t ) − y N ( t ) ∣ ≤ ∣ 2 t s i n ( 2 t ) 2 t − s i n ( 2 t ) ∣ → 0 when t → 0 t\to 0 t → 0 . In particular, the error of approximation does not depend on N N N .
Let Y N ( x ) = 1 2 ∫ 0 x ( sin ( N + 1 2 ) t ) t 2 d t Y_N(x) = \frac{1}{2}\int_{0}^x \frac{(\sin(N+\frac{1}{2})t)}{\frac{t}{2}}dt Y N ( x ) = 2 1 ∫ 0 x 2 t ( s i n ( N + 2 1 ) t ) d t . Show that Y N Y_N Y N acheives its maximum at x N = π N + 1 2 x_N = \frac{\pi}{N+\frac{1}{2}} x N = N + 2 1 π , and Y N ( x N ) = ∫ 0 π sin x x Y_N(x_N) = \int_{0}^\pi \frac{\sin x}{x} Y N ( x N ) = ∫ 0 π x s i n x .
Define the ‘overshoot’ of f f f at the origin by lim ϵ → 0 + lim N → ∞ sup 0 < x < ϵ ∣ f N ( x ) − f ( x ) ∣ \lim_{\epsilon \to 0^+}\lim_{N\to \infty}\sup_{0<x<\epsilon}|f_N(x) - f(x)| lim ϵ → 0 + lim N → ∞ sup 0 < x < ϵ ∣ f N ( x ) − f ( x ) ∣ , show that it is equal to ∫ 0 π sin x x d x − π 2 \int_{0}^\pi \frac{\sin x}{x}dx - \frac{\pi}{2} ∫ 0 π x s i n x d x − 2 π .
∫ 0 π sin x x d x − π 2 ≃ π 2 ⋅ 0.08949 \int_{0}^\pi \frac{\sin x}{x}dx - \frac{\pi}{2}\simeq \frac{\pi}{2}\cdot 0.08949 ∫ 0 π x s i n x d x − 2 π ≃ 2 π ⋅ 0.08949 , this shows that near a jump discontinunity, the Fourier series overshoots by 9% of the jump.