Problem 1 ¶ Let U U U be an open interval on R \mathbb{R} R .
Let T T T be a distribution on U U U . If T ′ = 0 T' = 0 T ′ = 0 , then T T T is a constant, i.e. for every φ ∈ C c ∞ ( U ) \varphi\in \mathscr{C}_c^{\infty}(U) φ ∈ C c ∞ ( U ) , ( T , φ ) = c φ (T,\varphi) = c\varphi ( T , φ ) = c φ for some constant c c c .
You may need to show the following fact: if φ ∈ C c ∞ ( U ) \varphi\in \mathscr{C}_c^{\infty}(U) φ ∈ C c ∞ ( U ) satisfies ∫ φ = 0 \int \varphi = 0 ∫ φ = 0 , then φ = ψ ′ \varphi = \psi' φ = ψ ′ for some ψ ∈ C c ∞ ( U ) \psi \in \mathscr{C}_c^{\infty}(U) ψ ∈ C c ∞ ( U ) . Problem 2 ¶ Let T ∈ D ′ T\in \mathcal D' T ∈ D ′ , ϕ ∈ C c ∞ \phi\in \mathscr{C}_c^{\infty} ϕ ∈ C c ∞ . Define the convolution of T ∗ ϕ T*\phi T ∗ ϕ to be a function given by ( T ∗ ϕ ) ( x ) ↦ ( T ( y ) , ϕ ( x − y ) ) (T*\phi)(x)\mapsto (T(y),\phi(x - y)) ( T ∗ ϕ ) ( x ) ↦ ( T ( y ) , ϕ ( x − y )) .
(1) Show that under the assumptions, T ∗ ϕ T*\phi T ∗ ϕ is smooth.
First show that T ∗ ϕ T*\phi T ∗ ϕ is continuous using definition. Write down the expression of d d x ( T ∗ ϕ ) \frac{d}{dx}(T*\phi) d x d ( T ∗ ϕ ) by definition and show that d d x ( T ∗ ϕ ) ( x ) = ( T , ϕ ′ ( x − y ) ) \frac{d}{dx}(T*\phi)(x) = (T,\phi'(x-y)) d x d ( T ∗ ϕ ) ( x ) = ( T , ϕ ′ ( x − y )) .
(2) Show that T ∗ ϕ ( x ) = ( T ( y ) , τ x ϕ − ( y ) ) T*\phi(x) = (T(y),\tau_x\phi^{-}(y)) T ∗ ϕ ( x ) = ( T ( y ) , τ x ϕ − ( y )) .
(3) Let ϕ ∈ C c l ( R ) \phi\in \mathscr{C}_c^{l}(\mathbb{R}) ϕ ∈ C c l ( R ) , ψ ∈ C c 0 ( R ) \psi \in \mathscr{C}_c^{0}(\mathbb{R}) ψ ∈ C c 0 ( R ) . Consider the Riemann sum R h ( x ) : = ∑ k ∈ Z ϕ ( x − k h ) ψ ( k h ) h R_h(x):=\sum_{k\in \mathbb{Z}} \phi(x - kh)\psi(kh)h R h ( x ) := ∑ k ∈ Z ϕ ( x − kh ) ψ ( kh ) h of ϕ ∗ ψ ( x ) = ∫ − ∞ + ∞ ϕ ( x − y ) ψ ( y ) d y \phi*\psi(x) = \int_{-\infty}^{+\infty}\phi(x - y)\psi(y)dy ϕ ∗ ψ ( x ) = ∫ − ∞ + ∞ ϕ ( x − y ) ψ ( y ) d y . Show that R h ( x ) → ϕ ∗ ψ ( x ) R_h(x)\to \phi*\psi(x) R h ( x ) → ϕ ∗ ψ ( x ) in C c l \mathscr{C}_c^{l} C c l when h → 0 h\to 0 h → 0 .
The function ( x , y ) ↦ ϕ ( x − y ) ψ ( y ) (x,y)\mapsto \phi(x-y)\psi(y) ( x , y ) ↦ ϕ ( x − y ) ψ ( y ) is uniformly continuous on R 2 \mathbb{R}^2 R 2 , conclude that R h → ϕ ∗ ψ R_h\to \phi*\psi R h → ϕ ∗ ψ uniformly.
Problem 3 ¶ Let ψ ϵ ∈ C c ∞ ( R ) \psi_\epsilon\in \mathscr{C}_c^{\infty}(\mathbb{R}) ψ ϵ ∈ C c ∞ ( R ) with ∫ ψ ϵ ≡ 1 \int \psi_\epsilon \equiv 1 ∫ ψ ϵ ≡ 1 for every ε and s u p p ( ψ ϵ ) → { 0 } supp(\psi_\epsilon)\to \{0\} s u pp ( ψ ϵ ) → { 0 } (in the sense that ⋂ s u p p ψ ϵ = { 0 } \bigcap supp \psi_\epsilon = \{0\} ⋂ s u pp ψ ϵ = { 0 } ).
For T ∈ D ′ T\in \mathcal D' T ∈ D ′ , by problem 2, T ∗ ψ ϵ ∈ C ∞ ( R ) T*\psi_\epsilon\in \mathscr{C}^{\infty}(\mathbb{R}) T ∗ ψ ϵ ∈ C ∞ ( R ) . Show that ( T ∗ ψ ϵ , φ ) → ( T , φ ) (T*\psi_\epsilon,\varphi) \to (T,\varphi) ( T ∗ ψ ϵ , φ ) → ( T , φ ) for every φ ∈ D \varphi\in \mathcal D φ ∈ D when ϵ → 0 \epsilon \to 0 ϵ → 0 .
In other words, T ∗ ϕ ϵ → T T*\phi_\epsilon \to T T ∗ ϕ ϵ → T in the weak-* topology of D ′ \mathcal D' D ′ . It follows that a distribution is a limit of T f T_f T f f for f ∈ C c ∞ f\in \mathscr{C}_c^{\infty} f ∈ C c ∞ . In particular, this justifies our intuition that “the δ-measure is limit of a good kernel”.
Problem 4 ¶ Show that T n → T T_n\to T T n → T in D ′ \mathcal D' D ′ implies T n ′ → T ′ T'_n\to T' T n ′ → T ′ in D ′ \mathcal D' D ′ .