Problem set 7

Problem 1

Let UU be an open interval on R\mathbb{R}. Let TT be a distribution on UU. If T=0T' = 0, then TT is a constant, i.e. for every φCc(U)\varphi\in \mathscr{C}_c^{\infty}(U), (T,φ)=cφ(T,\varphi) = c\varphi for some constant cc.

Problem 2

Let TDT\in \mathcal D', ϕCc\phi\in \mathscr{C}_c^{\infty}. Define the convolution of TϕT*\phi to be a function given by (Tϕ)(x)(T(y),ϕ(xy))(T*\phi)(x)\mapsto (T(y),\phi(x - y)).

(1) Show that under the assumptions, TϕT*\phi is smooth.

(2) Show that Tϕ(x)=(T(y),τxϕ(y))T*\phi(x) = (T(y),\tau_x\phi^{-}(y)).

(3) Let ϕCcl(R)\phi\in \mathscr{C}_c^{l}(\mathbb{R}), ψCc0(R)\psi \in \mathscr{C}_c^{0}(\mathbb{R}). Consider the Riemann sum Rh(x):=kZϕ(xkh)ψ(kh)hR_h(x):=\sum_{k\in \mathbb{Z}} \phi(x - kh)\psi(kh)h of ϕψ(x)=+ϕ(xy)ψ(y)dy\phi*\psi(x) = \int_{-\infty}^{+\infty}\phi(x - y)\psi(y)dy. Show that Rh(x)ϕψ(x)R_h(x)\to \phi*\psi(x) in Ccl\mathscr{C}_c^{l} when h0h\to 0.

Problem 3

Let ψϵCc(R)\psi_\epsilon\in \mathscr{C}_c^{\infty}(\mathbb{R}) with ψϵ1\int \psi_\epsilon \equiv 1 for every ε and supp(ψϵ){0}supp(\psi_\epsilon)\to \{0\} (in the sense that suppψϵ={0}\bigcap supp \psi_\epsilon = \{0\}). For TDT\in \mathcal D', by problem 2, TψϵC(R)T*\psi_\epsilon\in \mathscr{C}^{\infty}(\mathbb{R}). Show that (Tψϵ,φ)(T,φ)(T*\psi_\epsilon,\varphi) \to (T,\varphi) for every φD\varphi\in \mathcal D when ϵ0\epsilon \to 0.

Problem 4

Show that TnTT_n\to T in D\mathcal D' implies TnTT'_n\to T' in D\mathcal D'.