Problem set 4

Problem 1

Let gg be a continuous function on the circle that is differentiable at x0x_0.

(1) Let σN=gFN\sigma_N = g*F_N be the NN-th Cesaro mean of gg. Show that xσN(x0)=gFN(x0)\frac{\partial}{\partial x}\sigma_N(x_0) = g*F_N'(x_0), where FNF_N' is the derivative of FNF_N.

(2) Show that σN(x0)CtFNL1|\sigma_N'(x_0)|\leq C \|tF_N'\|_{L^1} for some C>0C>0.

(3) Show that FN(t)At2|F_N'(t)|\leq \frac{A}{|t|^2}. Hint: Calculate the derivative of FN(t)=1Nsin2(Nt/2)sin2(t/2)F_N(t) = \frac{1}{N}\frac{\sin^2(Nt/2)}{\sin^2(t/2)}, and use sin(t/2)ct|\sin(t/2)|\geq c|t|.

(4) Show that tFNL1=O(logN)\|tF_N'\|_{L^1} = O(\log N).

Problem 2

Let ff be supported on [12,12][-\frac{1}{2},\frac{1}{2}] such that f(12)=f(12)=0f(-\frac{1}{2}) = f(\frac{1}{2}) = 0. The periodization f1(x)=k=+f(xk)f_1(x) = \sum_{k = -\infty}^{+\infty}f(x- k) makes copies of ff to get a function on T\mathbb{T}.

Let ff be C1\mathscr{C}^1 so that f1C1(T)f_1\in \mathscr{C}^1(\mathbb{T}).

(1) Let f^(s)\hat f(s) be the Fourier transform of ff, let cnc_n be the Fourier coefficients of f1f_1. Show that f^(n)=cn\hat{f}(n) = c_n for nZn\in \mathbb{Z}. In other words, the integral value of Fourier transform of ff is equal to the Fourier coefficients of periodization of ff. This justifies our usage of notation f^(n)\hat{f}(n) for Fourier coefficients.

(2) Conclude that n=+f(x+n)=n=+e2πinx\sum_{n = -\infty}^{+\infty}f(x+n) = \sum_{n = -\infty}^{+\infty}e^{2\pi i n x}.

(3) Conclude that n=+f(n)=n=+f^(n)\sum_{n = -\infty}^{+\infty}f(n) = \sum_{n = -\infty}^{+\infty} \hat f(n).

Problem 3

Show that if fL1(R)f\in L^1(\mathbb{R}), then Ff\mathcal F f is continuous.

Problem 4

A function ff on R\mathbb{R} is called moderate decreasing provided f(x)A1+x2|f(x)|\leq \frac{A}{1+x^2} for some A>0A>0 and xRx\in \mathbb{R}. Let ff be a moderate decreasing function on R\mathbb{R}.

(1) Show that if ff is moderate decreasing, then the improper integral +f(x)dx\int_{-\infty}^{+\infty}f(x)dx converges.

(2) Show that +f(xh)dx=+f(x)dx\int_{-\infty}^{+\infty}f(x-h)dx = \int_{-\infty}^{+\infty}f(x) dx.

(3) Show that for a>0a> 0, +f(ax)dx=1a+f(x)dx\int_{-\infty}^{+\infty}f(ax)dx = \frac{1}{a}\int_{-\infty}^{+\infty}f(x) dx.

(4) Prove that let ff be a moderate decreasing continuous function on R\mathbb{R}. Then fT(x)=k=+f(x+kT)f_T(x) = \sum_{k = -\infty}^{+\infty}f(x+kT) defines a TT-periodic continuous function on R\mathbb{R} such that fT(x)f(x)Cπ2T2,xT2f_T(x) - f(x)\leq C \frac{\pi^2}{T^2}, \forall |x|\leq \frac{T}{2}.

(5) If both ff and f^\hat f are moderate decreasing then the Poisson summation formula holds.

Problem 5

Let f,gf,g be L1L^1 functions on R\mathbb{R}. The convolution of f,gf,g is given by

fg(x)=+f(xy)g(y)dy.f*g(x) = \int_{-\infty}^{+\infty}f(x-y)g(y)dy.

Before we did convolution of periodic functions (or circular convolution). Let f,gf,g be supported on (12,12).(-\frac{1}{2},\frac{1}{2}). Let f1,g1f_1,g_1 be the periodization of f,gf,g to 1-periodic functions. Show that f1g1=fg1f_1*g_1 = f*g_1, where the left hand side is the periodic convolution 01f1(xy)g1(y)dy\int_{0}^1 f_1(x - y)g_1(y)dy, the right hand side is the convolution on R\mathbb{R}, i.e. +f(xy)g1(y)dy\int_{-\infty}^{+\infty}f(x-y)g_1(y)dy.